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TL;DR

Existing methods which train Bayesian neural networks (BNNs) with data augmenta-

tion (DA) result in invalid likelihoods [7, 4]. A functional invariance viewpoint pre-

scribes an easy-to-implement adjustment which lower bounds a proper log-likelihood.

This improves performance, but does not reduce the cold posterior effect (CPE, [7]).

Data Augmentation and Cold Posteriors

• When training BNNs using DA we condition on more information than the N

unaugmented observations

• However, the augmented xi, yi pairs do not have independent p(yi|xi), so cannot

be treated as “real” observations with their own likelihood terms

Q1: How should we model DA when training BNNs?

• Previous works include DA in BNN training by replacing each input xi with a sam-

pled augmentation x′i ∼ p(x′i|xi), leaving inference algorithm and N unchanged

• This resulting targeted likelihood is invalid:
∑
Y expEx′|x[log p(y|x′,w)] = Z(x)

• It is known that the introduction of DA can induce a CPE in these cases [5, 3, 4]

Q2: Does a proper model of DA remove the CPE?

Probabilistic Model of Data Augmentation

We build functional invariance into the model, not the training data.

• We seek a function h : X → Y which is invariant wrt augmentations p(x′|x)
• Following van der Wilk et al. [6] we construct the invariant function by summing a

non-invariant function g(.;w) (NN in this case) over the augmentation distribution

h(x;w) =

∫
X ′
g(x′;w)p(x′|x)dx′ , (1)

and do inference on its parameters w

• For classification, we have a choice as to what g(.;w) represents: should we aver-

age logits (g(.;w) = f(.;w), as in [6]) or probabilities (g(.;w) = softmax f(.;w))?

We assess both empirically.

• (1) is intractable, however, we can lower bound any resulting log-concave likelihood

via Jensen. Wenzel et al. [7] noted this in the case of averaging model probabilities

Liprob(yi;w) = logE[softmaxyi f(x
′
i;w)] > E[log softmaxyi f(x

′
i;w)] = L̂iprob (2)

but can we do better?

Tighter Bounds

Yes! We can use multi-sample estimators [2] to get tighter bounds

L̂iprob,K(yi;w) = E
[
log 1

K

∑K
k=1 softmaxyi f(x

′
i;k;w)

]
, (3)

L̂ilogits,K(yi;w) = E
[
log softmaxyi

1
K

∑K
k=1f(x

′
i;k;w)

]
. (4)

At K = 1 both bounds reduce to standard DA, we explore the impact of K > 1

experimentally.

Further, we define finite orbit augmentations which admit exact log-likelihood

calculation. We use this as a diagnostic to test if invalid likelihoods (such as in

standard DA) cause CPE. For some deterministic functions {ak(.)} the finite orbit

augmentation distribution is

p(x′i|xi) = 1
K

∑K
k=1δ(x

′
i − ak(xi)). (5)

Comment (3) and (4) describe a simple change to BNN training to incorporate DA:

average the network output over multiple augmentations!

Non-Bayesian Network Results
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Figure 1: Variation of test performance with ResNet18 trained with SGD.

• Test time augmentation and averaging gives big improvement, even at Ktrain = 1

• When using test-time augmentation, optimal performance is at Ktrain > 1

• Overall, averaging probabilities > averaging logits

• Models trained with logit-averaging, but tested without any augmentation degrade

with Ktrain

◦Underlying NN may become less invariant, but model construction (1) ensures

invariance through averaging

Bayesian Neural Network Results
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Figure 2: CPE for our augmentation configs. GGMC, CIFAR-10, ResNet20.

• Multi-sample log-likelihood bounds improve peak performance over standard DA

• The CPE persists, with the exception of averaging logits over finite orbit

• Averaging probabilities at low T has best overall performance

• Averaging logits performs best at T = 1

Conclusion

Our probabilistic model of DA, which produces a valid likelihood. can improve NN

performance. However, the CPE remains, supporting other proposed explanations

such as data curation [1], or prior misspecification [7, 5].
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