Data augmentation in Bayesian neural networks and the cold posterior effect

Seth Nabarro^{*,1}, Stoil Ganev^{*,2}, Adrià Garriga-Alonso³, Vincent Fortuin⁴, Mark van der Wilk^{†,1}, Laurence Aitchison^{†,2} ¹Imperial College London, ²University of Bristol, ³University of Cambridge, ⁴ETH Zürich *[†]equal contribution

TL;DR

Existing methods which train Bayesian neural networks (BNNs) with data augmentation (DA) result in invalid likelihoods [7, 4]. A functional invariance viewpoint prescribes an easy-to-implement adjustment which lower bounds a proper log-likelihood. This improves performance, but does not reduce the cold posterior effect (CPE, [7]).

Data Augmentation and Cold Posteriors

- When training BNNs using DA we condition on more information than the Nunaugmented observations
- However, the augmented \mathbf{x}_i, y_i pairs do not have independent $p(y_i | \mathbf{x}_i)$, so cannot be treated as "real" observations with their own likelihood terms

Q1: How should we model DA when training BNNs?

- Previous works include DA in BNN training by replacing each input \mathbf{x}_i with a sampled augmentation $\mathbf{x}'_i \sim p(\mathbf{x}'_i | \mathbf{x}_i)$, leaving inference algorithm and N unchanged
- This resulting targeted likelihood is invalid: $\sum_{\mathcal{Y}} \exp \mathbb{E}_{\mathbf{x}'|\mathbf{x}}[\log p(y|\mathbf{x}',\mathbf{w})] = Z(\mathbf{x})$
- It is known that the introduction of DA can induce a CPE in these cases [5, 3, 4]

Q2: Does a proper model of DA remove the CPE?

Probabilistic Model of Data Augmentation

We build functional invariance into the model, not the training data.

- We seek a function $h: \mathcal{X} \to \mathcal{Y}$ which is *invariant* wrt augmentations $p(\mathbf{x}'|\mathbf{x})$
- Following van der Wilk et al. [6] we construct the invariant function by summing a non-invariant function $g(.; \mathbf{w})$ (NN in this case) over the augmentation distribution

$$h(\mathbf{x}; \mathbf{w}) = \int_{\mathcal{X}'} g(\mathbf{x}'; \mathbf{w}) p(\mathbf{x}' | \mathbf{x}) d\mathbf{x}' \,,$$

and do inference on its parameters w

- For classification, we have a choice as to what $g(.; \mathbf{w})$ represents: should we average logits $(g(.; \mathbf{w}) = \mathbf{f}(.; \mathbf{w}), \text{ as in [6]})$ or probabilities $(g(.; \mathbf{w}) = \operatorname{softmax} \mathbf{f}(.; \mathbf{w}))$? We assess both empirically.
- \bullet (1) is intractable, however, we can lower bound any resulting log-concave likelihood via Jensen. Wenzel et al. [7] noted this in the case of averaging model probabilities

$$\mathcal{L}^{i}_{\mathsf{prob}}(y_{i};\mathbf{w}) = \log \mathbb{E}[\operatorname{softmax}_{y_{i}} \mathbf{f}(\mathbf{x}'_{i};\mathbf{w})] \geq \mathbb{E}[\log \operatorname{softmax}_{y_{i}} \mathbf{f}(\mathbf{x}'_{i};\mathbf{w})]$$

but can we do better?

Tighter Bounds

(1)

 $[\mathbf{w})] = \hat{\mathcal{L}}^i_{\mathsf{prob}}$ (2)

Yes! We can use multi-sample estimators [2] to get tighter bounds

 $\hat{\mathcal{L}}^{i}_{\mathsf{prob},K}(y_{i};\mathbf{w}) = \mathbb{E}\left[\log\frac{1}{K}\sum_{k=1}^{K}\operatorname{softm}\right]$ $\hat{\mathcal{L}}^{i}_{\mathsf{logits},K}(y_{i};\mathbf{w}) = \mathbb{E} \left| \log \operatorname{softmax}_{y_{i}} \frac{1}{K} \sum_{i=1}^{N} \right|$

At K = 1 both bounds reduce to standard DA, we explore the impact of K > 1experimentally.

Further, we define **finite orbit** augmentations which admit **exact log-likelihood** calculation. We use this as a diagnostic to test if invalid likelihoods (such as in standard DA) cause CPE. For some deterministic functions $\{a_k(.)\}$ the finite orbit augmentation distribution is

$$p(\mathbf{x}'_i|\mathbf{x}_i) = \frac{1}{K} \sum_{k=1}^{K} \delta(\mathbf{x}'_i - a_k(\mathbf{x}_i)).$$
(5)

Comment (3) and (4) describe a simple change to BNN training to incorporate DA: average the network output over multiple augmentations!

Non-Bayesian Network Results

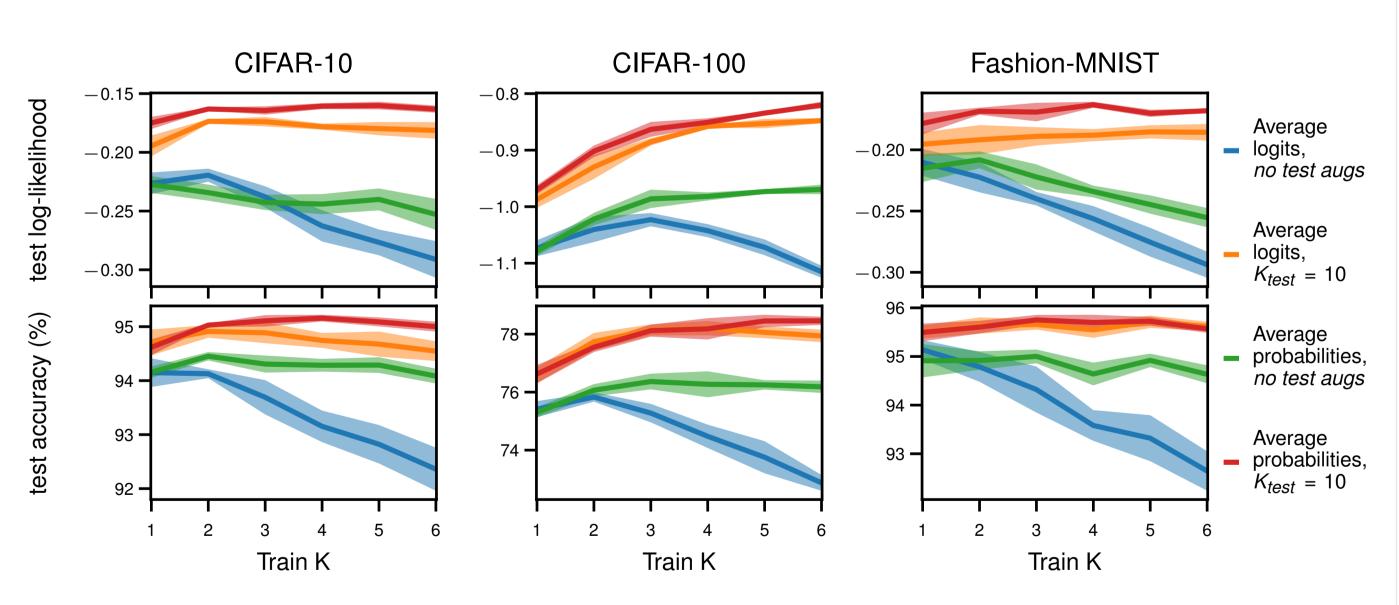


FIGURE 1: Variation of test performance with ResNet18 trained with SGD.

- Test time augmentation and averaging gives big improvement, even at $K_{\text{train}} = 1$
- When using test-time augmentation, optimal performance is at $K_{\text{train}} > 1$
- Overall, averaging probabilities > averaging logits
- Models trained with logit-averaging, but tested without any augmentation degrade with K_{train}

• Underlying NN may become *less* invariant, but model construction (1) ensures invariance through averaging

$\max_{y_i} \mathbf{f}(\mathbf{x}'_{i;k}; \mathbf{w}) \Big],$	(3)
$\sum_{k=1}^{K} \mathbf{f}(\mathbf{x}'_{i;k}; \mathbf{w}) \Big].$	(4)

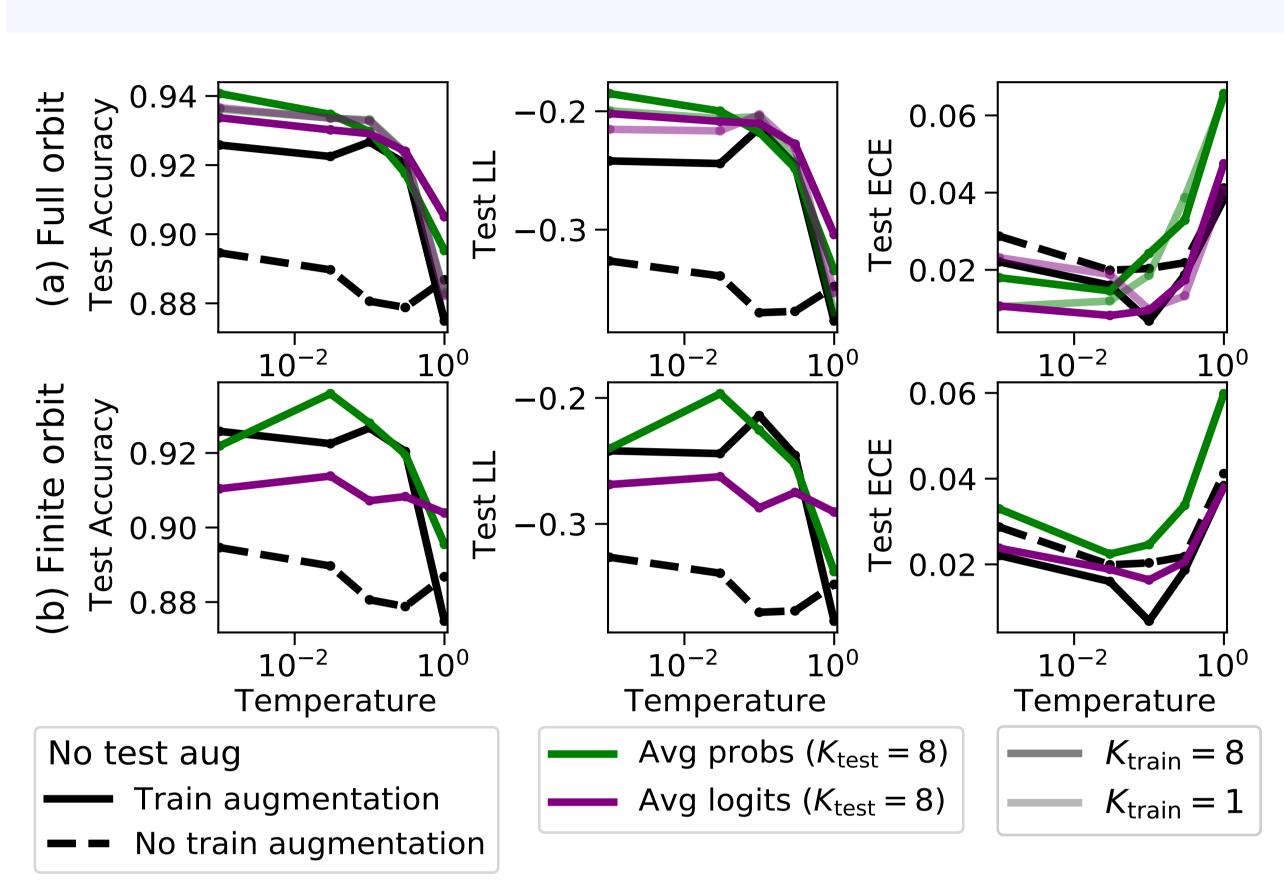


FIGURE 2: CPE for our augmentation configs. GGMC, CIFAR-10, ResNet20.

- Multi-sample log-likelihood bounds improve peak performance over standard DA • The CPE persists, with the exception of averaging logits over finite orbit • Averaging probabilities at low T has best overall performance • Averaging logits performs best at T = 1

Our probabilistic model of DA, which produces a valid likelihood. can improve NN performance. However, the CPE remains, supporting other proposed explanations such as data curation [1], or prior misspecification [7, 5].

- arXiv:2008.05912, 2020.
- [2] Burda, Y. et al. Importance weighted autoencoders. *arXiv preprint arXiv:1509.00519*, 2015. [3] Fortuin, V., Garriga-Alonso, A., et al. Bayesian neural network priors revisited. arXiv preprint
- *arXiv:2102.06571*, 2021.
- [4] Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson, A. G. What are Bayesian neural network posteriors really like? arXiv:2104.14421, 2021.
- [5] Noci, L., Roth, K., Bachmann, G., et al. Disentangling the roles of curation, data-augmentation and the prior in the cold posterior effect. arXiv preprint arXiv:2106.06596, 2021.
- [6] van der Wilk, M. et al. Learning invariances using the marginal likelihood. arXiv preprint arXiv:1808.05563, 2018.
- [7] Wenzel, F., Roth, K., Veeling, B. S., et al. How good is the Bayes posterior in deep neural networks really? arXiv preprint arXiv:2002.02405, 2020.

Bayesian Neural Network Results

Conclusion

References

[1] Aitchison, L. A statistical theory of cold posteriors in deep neural networks. arXiv preprint