Data augmentation in Bayesian neural networks
and the cold posterior effect

Seth Nabarro*! Stoil Ganev*? Adrii Garriga—AIonso3,

Vincent Fortuin®* Mark van der Wilk'! Laurence Aitchison'?

1Imperial College London, 2University of Bristol, 3University of Cambridge, “ETH Ziirich *Tequal contribution

TL;DR

Existing methods which train Bayesian neural networks (BNNs) with data augmenta-
tion (DA) result in invalid likelihoods [7, 4]. A functional invariance viewpoint pre-
scribes an easy-to-implement adjustment which lower bounds a proper log-likelihood.
This improves performance, but does not reduce the cold posterior effect (CPE, [7]).

Data Augmentation and Cold Posteriors

e When training BNNs using DA we condition on more information than the N

unaugmented observations

e However, the augmented x;, y; pairs do not have independent p(y;|x;), so cannot
be treated as “real’ observations with their own likelihood terms

Q1: How should we model DA when training BNNs?

e Previous works include DA in BNN training by replacing each input x; with a sam-
pled augmentation X, ~ p(x;|X;), leaving inference algorithm and N unchanged

e This resulting targeted likelihood is invalid: } _,, exp Eyx|log p(y|x’, w)| = Z(x)
e |t is known that the introduction of DA can induce a CPE in these cases [5, 3, 4]

Q2: Does a proper model of DA remove the CPE?

Probabilistic Model of Data Augmentation

We build functional invariance into the model, not the training data.

e We seek a function h : X — Y which is invariant wrt augmentations p(x'|x)

e Following van der Wilk et al. [6] we construct the invariant function by summing a
non-invariant function g(.; w) (NN in this case) over the augmentation distribution

hix; w) = //g(x’;w)p(x’\x)dx’, (1)

and do inference on its parameters w

e For classification, we have a choice as to what ¢(.; w) represents: should we aver-
age logits (g(.; w) = f(.;w), as in [6]) or probabilities (¢(.; w) = softmax f(.; w))?
We assess both empirically.

e (1) is intractable, however, we can lower bound any resulting log-concave likelihood
via Jensen. Wenzel et al. [7] noted this in the case of averaging model probabilities

| (v w) = log Efsoftmax,, f(x/: w)] > E[log softmax,, f(x}; w)] = L 9
prob Ui ; . Z  ob

but can we do better?

Tighter Bounds

Yes! We can use multi-sample estimators [2] to get tighter bounds

AérOij(yi; w)=FE _log %Zle softmax, f(ngk; W)} , (3)

Afogits,K(yi; W) =K log SOftmaX?Jz‘ %Z?zlf(xg,/m W)} ' (4)

At K = 1 both bounds reduce to standard DA, we explore the impact of X' > 1
experimentally.

Further, we define finite orbit augmentations which admit exact log-likelihood
calculation. We use this as a diagnostic to test if invalid likelihoods (such as in
standard DA) cause CPE. For some deterministic functions {a;(.)} the finite orbit
augmentation distribution is

p(X)xi) = =31 0(x) — ax(x;)). (5)

Comment (3) and (4)) describe a simple change to BNN training to incorporate DA:
average the network output over multiple augmentations!

Non-Bayesian Network Results
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FIGURE 1: Variation of test performance with ResNet18 trained with SGD.

e Test time augmentation and averaging gives big improvement, even at K., = 1
e \When using test-time augmentation, optimal performance is at K., > 1
e Overall, averaging probabilities > averaging logits

e Models trained with logit-averaging, but tested without any augmentation degrade
W|th Ktrain

o Underlying NN may become less invariant, but model construction (1) ensures
invariance through averaging

& | A University of
BEi BRISTOL

Imperial College
London

ETHzurich
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FIGURE 2: CPE for our augmentation configs. GGMC, CIFAR-10, ResNet20.

e Multi-sample log-likelihood bounds improve peak performance over standard DA
e The CPE persists, with the exception of averaging logits over finite orbit
e Averaging probabilities at low 7' has best overall performance

e Averaging logits performs best at T =1

Conclusion

Our probabilistic model of DA, which produces a valid likelihood. can improve NN
performance. However, the CPE remains, supporting other proposed explanations

such as data curation [1], or prior misspecification [7, 5].
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