

# Background

#### Meta learning

The goal of meta learning is to learn a meta model on a distribution of tasks, which can generalize to novel tasks. In meta learning, the training set and the testing set do not share the same categories. Meta learning methods include learning a good metric, optimizer, or a fast adaptation algorithm.

#### Learning representations for meta learning

In RFS[a], a simple baseline algorithm that learns representations for meta learning/few-shot learning has been proposed. In training, a classification model is trained in a supervised manner, shown as follows.



In meta testing, the embedding model serves to extract features for both support images and query images. Then, a linear classifier is trained with only a few samples to perform few-shot testing.



With this simple baseline, RFS[a] achieves state-of-the-art performance on multiple benchmarks, surpassing existing complicated meta learning algorithms.

# Few-Shot Learning with Online Self-Distillation Sihan Liu<sup>\*1</sup> Yue Wang<sup>\*2</sup> <sup>1</sup>Boston University <sup>2</sup>Massachusetts Institute of Technology

#### Method



Our method consists of two branches: a student network that learns to predict categorical labels; a teacher network which is a moving average of the teacher network. Our goal is to get the optimal parameters of the student network, given by

$$\Phi' = \arg\min(\alpha L^{ce}(D^{new}; \phi') + \beta KL(f$$

Also, the update rule of the teacher network is shown as follows.



Finally, we use CutMix to further boost the performance. We create a new training example by mixing up two existing examples sampled from the dataset:

$$\bar{x} = M \odot x_a + (1 - M)$$
  
$$\bar{y} = my_a + (1 - m)y$$
  
where (x<sub>a</sub>, y<sub>a</sub>) and (x<sub>b</sub>, y<sub>b</sub>) are image-label pairs.

 $f(D^{new};\phi'), f(D^{new};\phi)).$ 

 $M) \odot x_b$  $n)y_b$ 

## **Experiments:**

|                                         |                | miniIn            |  |
|-----------------------------------------|----------------|-------------------|--|
| model                                   | backbone       | 1-shot            |  |
| MAML [6]                                | 32-32-32-32    | $48.70 \pm 1.00$  |  |
| Matching Networks [23]                  | 64-64-64-64    | $43.56 \pm 0.01$  |  |
| IMP [1]                                 | 64-64-64       | $49.2 \pm 0.1$    |  |
| Prototypical Networks <sup>†</sup> [19] | 64-64-64       | $49.42 \pm 0.0$   |  |
| TAML [9]                                | 64-64-64       | $51.77 \pm 1.00$  |  |
| SAML [8]                                | 64-64-64       | $52.22 \pm n$     |  |
| GCR [11]                                | 64-64-64       | $53.21 \pm 0.0$   |  |
| KTN(Visual) [15]                        | 64-64-64       | $54.61 \pm 0.01$  |  |
| PARN[24]                                | 64-64-64       | $55.22\pm0.0$     |  |
| Dynamic Few-shot [7]                    | 64-64-128-128  | $56.20\pm0.0$     |  |
| Relation Networks [21]                  | 64-96-128-256  | $50.44 \pm 0.0$   |  |
| R2D2 [2]                                | 96-192-384-512 | $51.2 \pm 0.0$    |  |
| SNAIL [12]                              | ResNet-12      | $55.71\pm0.0$     |  |
| AdaResNet [13]                          | ResNet-12      | $56.88\pm0.01$    |  |
| TADAM [14]                              | ResNet-12      | $58.50\pm0.01$    |  |
| Shot-Free [17]                          | ResNet-12      | $59.04 \pm n$     |  |
| TEWAM [16]                              | ResNet-12      | $60.07 \pm n$     |  |
| MTL [20]                                | ResNet-12      | $61.20 \pm 1.00$  |  |
| Variational FSL [26]                    | ResNet-12      | $61.23 \pm 0.01$  |  |
| MetaOptNet [10]                         | ResNet-12      | $62.64 \pm 0.01$  |  |
| Diversity w/ Cooperation [5]            | ResNet-18      | $59.48 \pm 0.02$  |  |
| Fine-tuning [4]                         | WRN-28-10      | $57.73 \pm 0.021$ |  |
| LEO-trainval <sup>†</sup> [18]          | WRN-28-10      | $61.76 \pm 0.000$ |  |
| RFS-simple                              | ResNet-12      | $62.02 \pm 0.02$  |  |
| RFS-distill                             | ResNet-12      | $64.82\pm0.01$    |  |
| Ours-online-distill (w/o CutMix)        | ResNet-12      | $64.33 \pm 0.02$  |  |
| Ours-online-distill                     | ResNet-12      | $67.07\pm0.01$    |  |
| Ours-online-distill-trainval †          | ResNet-12      | <b>68.96</b> ± 0. |  |

#### **Results:**

Our method with CutMix achieves stage-of-the-art performance on all settings. Without CutMix, our method outperforms RFS (w/o distillation, one stage) and is comparable to RFS (w/ distillation, two stage) while our method only uses one-stage training.

## **Conclusion:**

- representations.
- research.

#### **Reference:**

[a] Rethinking Few-Shot Image Classification: A Good Embedding Is All You Need?

# Rev Coctober 11-17

| ImageNet 5-way |                  |                            |                | <b>CIFAR-FS 5-way</b>              |                                  | FC100 5-way                        |                                  |
|----------------|------------------|----------------------------|----------------|------------------------------------|----------------------------------|------------------------------------|----------------------------------|
| ot             | 5-shot           | model                      | backbone       | 1-shot                             | 5-shot                           | 1-shot                             | 5-shot                           |
| 1.84           | 63.11 ± 0.92     | MAML [6]                   | 32-32-32-32    | $58.9 \pm 1.9$                     | $71.5\pm1.0$                     | -                                  | -                                |
| 0.84           | $55.31 \pm 0.73$ | Prototypical Networks [19] | 64-64-64       | $55.5\pm0.7$                       | $72.0\pm0.6$                     | $35.3\pm0.6$                       | $48.6\pm0.6$                     |
| 0.7            | $64.7\pm0.7$     | Relation Networks [21]     | 64-96-128-256  | $55.0\pm1.0$                       | $69.3\pm0.8$                     | -                                  | -                                |
| 0.78           | $68.20\pm0.66$   | R2D2 [2]                   | 96-192-384-512 | $65.3\pm0.2$                       | $\textbf{79.4} \pm \textbf{0.1}$ | -                                  | -                                |
| 1.86           | $66.05 \pm 0.85$ | TADAM [14]                 | ResNet-12      | -                                  | -                                | $40.1\pm0.4$                       | $56.1\pm0.4$                     |
| n/a            | $66.49 \pm n/a$  | Shot-Free [17]             | ResNet-12      | $69.2\pm$ n/a                      | $84.7 \pm n/a$                   | -                                  | -                                |
| 0.80           | $72.34 \pm 0.64$ | TEWAM [16]                 | ResNet-12      | $70.4 \pm n/a$                     | $81.3 \pm n/a$                   | -                                  | -                                |
| 0.80           | $71.21 \pm 0.66$ | Prototypical Networks [19] | ResNet-12      | $72.2\pm0.7$                       | $83.5\pm0.5$                     | $37.5\pm0.6$                       | $52.5\pm0.6$                     |
| 0.84           | $71.55 \pm 0.66$ | MetaOptNet [10]            | ResNet-12      | $72.6\pm0.7$                       | $84.3\pm0.5$                     | $41.1\pm0.6$                       | $55.5\pm0.6$                     |
| 0.86           | $73.00\pm0.64$   | RFS-simple                 | ResNet-12      | $71.5\pm0.8$                       | $86.0\pm0.5$                     | $42.6\pm0.7$                       | 59.1 ± 0.6                       |
| 0.82           | $65.32\pm0.70$   | RFS-distill                | ResNet-12      | $73.9\pm0.8$                       | $86.9\pm0.5$                     | $44.6\pm0.7$                       | $60.9\pm0.6$                     |
| 0.6            | $68.8\pm0.1$     | Ours-online-distill        | ResNet-12      | $\textbf{76.18} \pm \textbf{0.21}$ | $\textbf{87.1} \pm \textbf{0.2}$ | $\textbf{45.43} \pm \textbf{0.24}$ | $\textbf{61.7} \pm \textbf{0.3}$ |
| 0.99           | $68.88 \pm 0.92$ |                            |                |                                    |                                  |                                    |                                  |
| 0.62           | $71.94 \pm 0.57$ |                            |                |                                    |                                  |                                    |                                  |

**Datasets**:

 $76.70 \pm 0.30$  $77.64 \pm n/a$ 

 $\textbf{83.03} \pm \textbf{0.18}$ 

- minilmageNet
- CIFAR-FS
- FC100
- Model:
- ResNet12

 Our one-stage online self-distillation pipeline relies on distilling knowledge from a momentum-updated teacher to a student and suggests that multi-stage self-distillation is not imperative. We also identify that CutMix significantly improves the

• We hope our method can shed new lights into the few-shot learning