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Outline

Visual attention mechanisms are an important component of deep learning models.
Most models for visual attention operate over discrete domains (Bahdanau et al., 2015).
Recently, continuous attention mechanisms have been proposed, limiting the attention
to a simple unimodal density (Martins et al., 2020).

This paper: we introduce multimodal continuous attention mechanisms.

From Discrete to Continuous Attention

Discrete Attention
Images are represented using L feature
vectors in RD (e.g., grid-level or object-level
representations).

Feature matrix V ∈ RD×L

Score vector f = [f1, . . . , fL]> ∈ RL

Probability vector via p = softmax(f )

Output:
Weighted average c = Vp ∈ RD

Continuous Attention
Images are represented as smooth functions
in 2D.

Feature function VB(x) = Bψ(x)

Score function
f (x) = −1

2(x − µ)>Σ−1(x − µ)

Probability density p(x) = N(x ;µ,Σ)

Output:
c = Ep[VB(x)] = B

∫
R2 p(x)ψ(x) ∈ RD

=⇒

This paper: multimodal continuous attention

We let the attention density be a mixture of unimodal distributions, specifically Gaussians

p(x) =
K∑
k=1

πkpk(x). (1)

Forward step. The context vector is a mixture of the context representations for each
component,

c = Ep[Bψ(x)] =
K∑
k=1

πk Epk[Bψ(x)]︸ ︷︷ ︸
ck

=
K∑
k=1

πkck. (2)

Backward step. Linear combination of unimodal attention mechanisms.

The EM algorithm with weighted data

Parameters: Centers of grid regions and weights X = {(x `,w`)}L`=1, initialization Θ(K ) = {(πk,µk,Σk)}Kk=1,
iterations I .

Function WeightedEM(X,Θ(K ), I) :
for i ← 1 to I do
for `← 1 to L do
for k ← 1 to K do
γ`k ← πkN(x `|µk ,Σk)∑K

j=1 πjN(x `|µj ,Σj)
// Evaluate the responsibilities

end
end
for k ← 1 to K do
πk ←

∑L
`=1 wlγ`k // Re-estimate the mixing coefficients

µk ← 1
πk

∑L
`=1 w`γ`kx `, Σk ← 1

πk

∑L
`=1 w`γ`k(x ` − µk)(x ` − µk)> // Re-estimate the means and covariances

end
end
return Θ = {(πk,µk,Σk)}Kk=1

Estimating the number of components

Parameters: Centers of grid regions and weights X = {(x `,w`)}L`=1, initialization Θ(K ) = {(πk,µk,Σk)}Kk=1,
iterations I .

Function ModelSelection(X, {Θ(k)}kmax
k=1, I , λ) :

for k ← 1 to kmax do
Θ̂k ← WeightedEM(X,Θ(k), I) // Obtain parameters using WeightedEM
logp(X|Θ̂k)←

∑L
`=1 w`log

{∑K
k=1 π̂kN(x `|µ̂k , Σ̂k)

}
, C(Θ̂k , k)← −2logp(X|Θ̂k) + λ k // Evaluate criterion

end
k? = argmink{C(Θ̂k , k)} // Choose the optimum number of components
return k?, Θ̂k?

How many zebras facing in the left direction?

Attention model

Each attention density is a K-component mixture of Gaussians.
At training time, we pick the number of components randomly from a uniform
distribution, up to a predefined maximum.
At test time, we select the optimum K ? from a set of possible choices, using a model
selection criterion.

Experiments: Visual Question Answering (VQA)

Unimodal continuous attention faces difficulties in complex scenes withmultiple regions
of interest far from each other. Multimodal attention densities tend to perform better.
For a single complex-shaped interest region, discrete attention may be too scattered and
unimodal attention too focused. Multimodal continuous attention is a good compromise.

Human attention

The attention distributions obtained with multimodal continuous attention are more
similar to human attention than the ones obtained with discrete or unimodal attention.

Attention JS divergence ↓
Discrete softmax 0.64
Unimodal continuous 0.59
Multimodal continuous 0.54

Humans sequentially look for regions in the image, until they found the information
they need. Our model replicates this process by identifying multiple regions of interest.

Is the baby using the computer?

Conclusions

New continuous attention mechanisms that produce multimodal densities with tractable
and efficient forward and gradient backpropagation steps.
Weighted version of the EM algorithm to obtain a selection of relevant regions.
Penalized likelihood method to select the number of components in the mixture.
Experiments on VQA mimic human attention and present increased interpretability.
Future work: Mixtures of sparse family distributions and other vision tasks.

Open-source code:
https://github.com/deep-spin/vqa-multimodal-continuous-attention
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