

We present a prior for manifold structured data, such as surfaces of 3D shapes, where deep neural networks are adopted to reconstruct a target shape using gradient descent starting from a random initialization. We show that surfaces generated this way are smooth, with limiting behavior

to minimize the reconstruction error wrt. the noisy target. Prior induced by the neural networks makes the generated surface much closer to the ground-truth, without ever seeing any additional training data.

Deep Manifold Prior

Matheus Gadelha mgadelha@cs.umass.edu

Rui Wang rui.wang@cs.umass.edu

Subhransu Maji smaji@cs.umass.edu

olation studies:		S1R	S8R	S1	S 8	C1R	C8R	C1	C8	RIMLS [23]	SPSR [16]
	avg.	4.48E-03	4.48E-04	2.75E-03	1.35E-03	1.08E-03	5.77E-04	1.00E-03	5.82E-04	1.98E-03	2.36E-02

Auto-encoder w/ stretch reg. Vanilla AtlasNet(top) trained with stretch reg. (bottom).

SVR w/ convolutional parametrizations. Mean Chamfer metric (scaled by 10^3).

	Surface	Contour	Implicit	RIMLS [23]	SPSR [16]
у	2.71E-04	6.64E-04	5.52E-04	1.43E-03	3.96E-04
on	4.18E-04	6.12E-04	1.20E-03	1.65E-03	1.46E-02
	2.73E-04	4.57E-04	6.83E-02	1.50E-03	2.10E-03
	2.59E-04	5.80E-04	2.64E-02	1.74E-03	1.00E-02
us	3.51E-04	4.95E-04	3.26E-03	1.96E-03	1.89E-02
	3.95E-04	4.22E-04	7.32E-03	2.09E-03	2.58E-02
1	1.05E-03	7.31E-04	1.64E-02	2.98E-03	7.90E-02
	5.69E-04	5.54E-04	4.81E-02	2.46E-03	3.76E-02
	4.48E-04	5.65E-04	2.13E-02	1.98E-03	2.36E-02

tecture	mean/cat.	mean/inst.	#params.
Net	4.80	4.26	81.6M
Net	4.74	4.38	42.6M
Atlas	4.53	4.00	14.5M