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Abstract. Convolutional neural networks (CNNs) have achieved great
success in image classification by utilizing large-scale datasets. However,
it is still of great challenge to learn from scratch on small-scale datasets.
When the dataset is limited, the concept of category will be ambigu-
ous and the over-parameterized CNNs tend to simply memorize the
dataset. Therefore, it is crucial to study how to learn more discrimina-
tive representations while avoiding over-fitting. In this paper, we propose
a new framework that consists of Contrastive Regularization and Aux-
iliary Classifier to learn representations efficiently, and Mean Teacher
and Symmetric Cross Entropy to constrain the fitting spend and fitting
balance. Together with other tricks, such as aggressive data augmenta-
tion, TenCrop inference and models ensembling, we achieve competitive
performance in the VIPriors Image Classification Challenge.

1 Introduction

Convolutional neural networks (CNNs) have achieved tremendous success in
image classification. However, it deeply depends on large-scale datasets, such
as ImageNet [6] and OpenImage [13]. Generally, CNNs learn to generalize well
with massive data. When trained on a small-scale dataset, they are required to
be pre-trained on a large-scale dataset in a supervised or unsupervised manner.
Herein, we can’t help to ask, can we achieve comparable results on a small
dataset by learning from scratch without any pre-training. This is an interesting
and significant topic proposed in the VIPriors Image Classification Challenge.

The objective of VIPriors Image Classification Challenge is to increase the
Top-1 Accuracy on ImageNet dataset by only using a small subset of ImageNet
dataset. The data is divided into three splits, including a training set, a validation
set, and a testing set which is unavailable during the model optimization. The
training and validation splits are two subsets of the original training split. The
test set is taken from the original validation split directly. Each split includes
1,000 classes which are the same as the original ImageNet and 50 images per
class, resulting in 50,000 images in total.

When the training data is limited, especially when the image amount of each
category is quite small (even less than the number of classes), the concept of
category tends to be ambiguous. Hence, it is a challenging problem to extract
discriminative representations by learning from scratch on a small dataset. Also,
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it is crucial to alleviate over-fitting since the models with a great network ca-
pacity are easy to memorize the dataset, leading to a poor generalization ability.
In this paper, we deal with the data defficient learning from two perspectives,
i) to enhance the representational capacity of the model, ii) to mitigate the
over-fitting problem.

Contrastive learning [1, 9] is usually utilized to learn discriminative represen-
tations in a supervised or unsupervised manner. We propose to use contrastive
learning on the prediction of the model to strengthen the learning of representa-
tions, which is termed as contrastive regularization in this paper. An auxiliary
classifier is added to the intermediate stage of the model to learn the repre-
sentations more efficiently. For alleviating the over-fitting problem, sufficient
augmentation strategies are necessary, such as random erasing [31], Mixup [27],
CutMix [26], AutoAugment [3], RandAugment [4], etc. We further use Mean
Teacher [23] to constrain the fitting spend and to learn more stable features.
And Symmetric Cross Entropy (SCE) [24] is used to balance the fitting of dif-
ferent classes.

2 Method

Our framework consists of Contrastive Regularization and Auxiliary Classifier
to learn representations efficiently, and Mean Teacher and Symmetric Cross En-
tropy to constrain the fitting spend and fitting balance. The entire pipeline is
shown in Fig. 1.

2.1 Contrastive Regularization

Contrastive learning [1, 9, 12] is a framework to learn similar/dissimilar repre-
sentations from data that are organized into similar/dissimilar pairs. Recently,
contrastive learning has promoted the performance of various tasks, including
semi-supervised learning [2, 14], learning with noisy label [30, 32] and so on. Su-
pervised Contrastive Learning (SCL) [12] adapts contrastive learning to the fully
supervised setting to learn more informative representations by effectively lever-
aging label information. SCL is an excellent representation learning method, but
the model learned by SCL often needs to finetune on downstream tasks. We in-
tegrate SCL with the target task by applying SCL on the final prediction of the
model, which is called Contrastive Regularization.

Within a multiview batch, let i ∈ I ≡ {1...2N} be the index of an arbitrary
augmented smaple, the original loss of SCL is as follow:

LSCL =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)

Here, zl is the feature representation, τ is a temperature hyper-parameter, A(i) ≡
I \ {i}, P (i) ≡ {p ∈ A(i) : ỹyyp = ỹyyi} is the set of indices of all positives in the
multiviewed batch distinct from i, and |P (i)| is its cardinality.
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Fig. 1. The pipeline of our method. The two views of images by different augmentation
are mainly used for Contrastive Regularization (CR). And they will also be utilized in
the consistency loss of Mean Teacher (MT) and Symmetric Cross Entropy (SCE).

The proposed Contrastive Regularization changes the feature zl to the soft-
max output ol of the model:

LCR =
∑
i∈I

−1

|P ′(i)|
∑

p∈P ′ (i)

log
exp(oi · op/τ)∑

a∈A(i) exp(oi · oa/τ)

Here, P
′
(i) ≡ {p ∈ A(i) : dis(ỹyyp, ỹyyi) < δ}, since we use the cutmix and mixup

during the training stage and the hard-label are changed to soft-label. We use
Jensen-Shannon divergence as the dis, and use δ to adjust the attention level to
individual-wise or class-wise contrasting.

The small delta is used to strengthen the individual information to improve
the standard classification. And the individual information also can avoid the
model to memorise the noisy class.

2.2 Mean Teacher

Mean Teacher [23] is proposed for semi-supervised learning. Here, we adapt it
to stabilize model learning. Mean teacher maintains the exponential moving
average (EMA) weights of the model and uses the EMA weights as a teacher
model. More formally, we define θ

′

t at training step t as the EMA of successive
θt weights.

θ
′

t = αθ
′

t−1 + (1− α)θt
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And we define the consistency loss LMT as the expected Kullback-Leibler
divergence between the prediction of the student model and the prediction of
the teacher model.

LMT = Ex[KL(f(x, θ)||f(x, θ
′
))]

Averaging model weights over training steps tends to produce a more sta-
bilized model and can provide more accurate soft-labels. Thus, the model can
avoid learning some inaccurate information via the consistency loss. The learning
process will be more robust.

2.3 Symmetric Cross Entropy

Symmetric Cross Entropy (SCE) [24] is a simple yet effective loss for learn-
ing with noisy label. It aims to simultaneously address the hard class learning
problem and the noisy label overfitting problem of Cross Entropy.

The label of ImageNet dataset is well-known to contain errors [18, 17]. And
there are many similar category concepts that will be more ambiguous when
the image amount of each category is limited. So, there may be some noisy
labels. And we find that accuracy varies greatly among different classes. Thus, we
employ Symmetric Cross Entropy [24] to balance the fitting of different classes.
The Symmetric Cross Entropy is easily constituted by standard cross entropy
and reverse cross entropy.

LSCE = H(p, q) +H(q, p)

Here, H(p, q) is the standard cross entropy.

2.4 Auxiliary Classifier

Supervisions to the intermediate output are usually used in deep learning to
reduce the difficulty of optimizing the deep network [21, 29] or to enhance the
information from different scales [25]. For better extracting the image informa-
tion, we add an Auxiliary Classifier to the intermediate output of the model.
And during inference, the prediction is computed by the weighted average of the
intermediate output and the final output, which is termed as Auxiliary Fusion.

3 Experiments

3.1 Dataset

We train models on the subset of the ImageNet [6] which was given by the
VIPrior Image Classification Challenge without any pre-trained models. In the
early phase of the competition, we study different methods by training models
on the training split and verifying the effectiveness on the validation split. And
in the final stage, we combine the training and validation splits for training and
randomly split a few samples for validation.
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Table 1. Model architecture compari-
son on validation split.

Model top-1 acc. (%)

EfficientNet-b2 41.11
EfficientNet-b4 49.40
ResNet50 40.91
ResNeXt101 32x4d 45.32
Swin Transformer 26.43

3.2 Implementation Details

We use the RMSprop [5] optimizer with alpha set to 0.9 and momentum set to
0.9. Models are trained with 8 GPUs and 16 samples per GPU. Due to the small
batchsize per GPU, we have used the Synchronized Batch Normalization (sync-
bn). Our learning rates are adjusted according to a cosine decaying policy [8]
and the initial learning rate is set to 0.005. The warm-up [8] strategy is applied
over the first 3 epochs, gradually increasing the learning rate linearly from 1e-6
to the initial value for the cosine schedule. The weight decay is set to 1e-5. The
default image resolution is 320x320 during the training.

3.3 Ablation Study

We have trained some models with different structures on the training split with
only some simple regularizations like dropout.

Table 1 shows the performances for different model architectures. We can see
that the larger models perform the better. Specifically, EfficientNet [22] surpasses
ResNet [10] in this task. While Swin Transformer [15] behaves badly. As the name
of the challenge, say “Visual Inductive Priors”, it needs more priors to learn from
scratch on a small dataset, while Transformer, as is well known, lacks some of
the inductive biases inherent to CNNs [7].

We use some common data augmentation methods and regularization meth-
ods that are as follows: AutoAugment [3], random erasing [31], dropout [19] with
probability of 0.3, label smoothing [21], mixup [27] with alpha of 0.5 and cut-
mix [26] with alpha of 1.0. In addition, prolonged training epochs as 460 epochs
are used to improve performance. The above methods enhance the generalization
capacity of the model, leading to a quite good performance, and we pick it as
our strong baseline. In Table 2, we compare some different augmentations with
Strong Baseline.

Table 3 shows the ablation results for EfficientNet-b2 [22] which are trained
on the training split and verified on the validation split. The techniques we
use in Fig. 1 further improve the top-1 accuracy from 58.09% to 61.18%. The
performance is even close to some single models trained with the training and
validation data last year.
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Table 2. Compare different augmentations with
Strong Baseline on validation split.

EfficientNet-b2 top-1 acc. (%)

Strong Baseline 58.09

AutoAugment → RandAugment 57.25
Mixup+Cutmix → Mixup 57.75
Mixup+Cutmix → Cutmix 57.22

Table 3. Ablation study on validation split.

EfficientNet-b2 top-1 acc. (%)

Strong Baseline 58.09
+SCE 59.10
+Mean Teacher 60.07
+Contrastive Regularization 60.84
+Auxiliary Classifier 60.98
+Auxiliary Fusion 61.18

3.4 Final Results

We find that a larger resolution can further boost the performance both on
the training and the inference. We use a larger resolution as 448x448 during
training. We only train a few larger resolution models entirely and finetune a
few epochs with a larger resolution on the default resolution models due to the
high resource-consuming.

During the inference, the 448x448 resolution and TenCrop are utilized. After
using these, we get an excellent performance (top-1 accuracy of 72.14%) by
single model (EfficientNet-b7). Table 4 shows the comparison with last year’s
single model.

Experimental evidence shows that the ensemble method is usually much more
accurate than a single model. We average the predictions of above methods in
total of 16 models including EfficientNet-b5 [22], EfficientNet-b6, EfficientNet-
b7, DSK-ResNeXt101 [20], ResNet-152 [10], SEResNet-152 [11]. Finally, we got
the top-1 accuracy of 74.49% on the testing set. We also compare our result after
ensembling with last year’s final results in Table 5.
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Table 4. Compare with
last year’s single model.

Method top-1 acc. (%)

Ours 72.14

Sun’s [20] 69.59
Luo’s [16] 66.36
Zhao’s [28] 66.20

Table 5. Compare with last
year’s final results.

Method top-1 acc. (%)

Ours 74.49

Sun’s [20] 73.08
Luo’s [16] 70.15
Zhao’s [28] 68.80

Fig. 2. Perfromance overview.

Fig. 2 shows an overview of methods and appearances. No external data or
pre-trained models were used throughout the competition.

4 Conclusions

In this paper, we discuss and explore how to enhance the generalization ca-
pacity in data defficient dettings. We deal with this problem by learning more
discriminative representations while avoiding over-fitting. And We propose a
new framework which consists of Contrastive Regularization, Auxiliary Classi-
fier, Mean Teacher and Symmetric Cross Entropy. Ablation studies show that
our framework is effective in data defficient learning. Finally we achieve compet-
itive performance in the VIPriors Image Classification Challenge together with
other tricks.
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