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Abstract

Data-efficient Action Recognition is an exceedingly fa-
vorable paradigm since few data and annotations are more
readily available on the internet. In this paper, we employ
the Slowonly network to capture both fast-tempo and slow-
tempo via encoding the features at different depths. Then
we build a temporal pyramid network (TPN) to aggregates
the information of various visual tempos at the feature level.
And TPN can be regarded as the complementary comment
to capture multi-granularity and task-oriented cues in the
data-efficient setting. In the test procedure, we formulate
the inference process as a Spatio-temporal consistency pre-
diction. Experimental results on 2™ “Visual Inductive Pri-
ors for Data-Efficient Computer Vision” demonstrate that
our method can achieve competitive results.

1. Introduction

Action Recognition [6] is a fundamental computer vi-
sion task and plays a critical role in video structure analysis
and potential down-stream applications. Although it has at-
tracted intense attention in recent years, it remains a very
challenging problem due to video fuzziness and instabil-
ity, and complex temporal relationships within the videos.
Albeit with varying degrees of progress, most of its recent
successes are involved in a massive data setting, i.e., each
category of video data is sufficient to model video features.
It is still arduous to acquire such numerous data that re-
quire a huge amount of manual effort. To alleviate such
expensive and unwieldy annotations, “Visual Inductive Pri-
ors for Data-Efficient Computer Vision” challenge proposes
to address this task in the data-efficient setting that learns to
perform action recognition with few data. This is an ex-
ceedingly favorable scheme since few data and annotations
are more readily available on the internet. In our work, we
focus on this data-efficient paradigm.

In the data-efficient setting, how to adopt a small amount
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of data to model action abstractions determines the upper
limit of the performance. For action recognition, it is es-
sential to capture multi-stage action tempo to model more
fine-grained action concepts and make accurate and robust
predictions. Visual tempo characterizes the dynamics and
the temporal scale of action, which helps to capture multi-
granularity and task-oriented cues in the data-efficient set-
ting. In this paper, we employ a stronger backbone to cap-
ture both fast-tempo and slow-tempo via encoding the fea-
tures at different depths. Then we build a temporal pyramid
network (TPN) to aggregates the information of various vi-
sual tempos at the feature level. By leveraging the feature
hierarchy formed inside the network, the proposed TPN is
able to work with input frames fed at a single rate. In this
paper, we employ the Slowonly network to replace the orig-
inal resnet network in TPN for feature extraction. Slowonly
network contributes to capturing semantic information that
can be given by images or a few sparse frames, and it oper-
ates at low frame rates and slow refreshing speed. And TPN
can be regarded as the complementary comment to encode
multi-granularity motion cues, by operating via three mod-
ules,i.e., spatial semantic modulation, temporal rate modu-
lation and parallel information flow.

In the test procedure, we formulate the inference pro-
cess as a Spatio-temporal consistency prediction. Specifi-
cally, we employ multiple crops technique to obtain diverse
region clips for inference in the spatial dimension. In the
temporal dimension, we obtain 24 video clips to predict the
action category. The spatial and temporal predictions are
combined to make the final consistency prediction.

Experimental results on 2nd “Visual Inductive Priors
for Data-Efficient Computer Vision” demonstrate that our
method can achieve competitive results.

2. Methodology

In this section, we first introduce the fundamental net-
work we choose to encode the semantical information and
the visual tempo of actions in section [2.1] and section [2.2]
Then, we illustrate the proposed spatio-temporal consis-
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Figure 1: The pipeline of the proposed framework.

tency prediction procedure in section [2.3] Moreover, we
design an ensemble strategy to capture the complementation
from different models to make robust predictions in section
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2.1. Temporal Pyramid Network

The two most essential components in action recognition
are the spatial semantics and the visual tempo of videos, and
the action tempo is especially vital to deal with this partic-
ular task. Previous works [} [1, [8] proposed to capture the
visual tempo at the input level that requires multiple net-
work backbones for different frame pyramid levels, which
causes time-consuming training and testing procedures.

Temporal pyramid network (TPN) [7] encodes the visual
tempo at the feature-level. Namely, since the visual tempo
is covered by features at multiple depths, TPN leverages this
feature-level visual tempo in a single network. TPN consists
of an encoding backbone to extract features from different
levels of features and a spatial modulation to align spatial
semantics. To realize the flexibility of various sample rates
similar to the input-level networks in [} [1} 8], TPN utilizes
a temporal modulation to downsample features according
to a given set of hyper-parameters {c;}2,, which denotes
different sample rates. Then, a parallel information flow
module is designed to aggregate features in different visual
tempos for the final prediction. To sum up, TPN contains
three modules to extract semantic information, encoded ac-
tion temporal clues and aggregate features sequentially.

2.2. Slowonly Network

TPN operates the feature-level visual tempo and can be
complemented by an input-level oriented network. And an
auxiliary model is able to provide another view of the in-
put action and helps to increase the recognition accuracy.
Therefore, we utilize a slowonly network as a supplement,
which includes a slow path processing low frame rate sam-
ples and a fast path processing high frame rate to formu-
late a multi-granularity visual tempo. However, we found
that under the data-efficient setting, the fast pathway brings
minor performance improvement but much slower training
speed, so we predigest the network by truncation the fast
path to formulate a slowonly network.

2.3. Spatio-Temporal Inference

Maintaining the consistency of prediction for the dis-
turbance both spatially and temporally is an essential key
to boost the performance of models in action recognition.
For the perspective of the spatial dimension, we incorpo-
rate the three-crop and the ten-crop method. Specifically,
in the three-crop setting, three random patches are cropped
from the original frame, and it is used as the approximation
of spatially fully convolutional testing as in [2, 4} [1]]. Un-
der the ten-crop setting, 5 patches are extracted then flipped
following the procedure in [3]. For the perspective of the
temporal dimension, we randomly take 10 or 24 clips from
a video to obtain temporal predictions. For the final predic-
tion, we develop an ensemble strategy to combine all of the
proposed inferencing granularities as is illustrated in section
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2.4. Model Ensemble

We conduct a predictions ensemble to generate the final
results, the components of our fusion include two comple-
mentary networks as are mentioned in section [2.1] and sec-
tion[2.2] For each network, in addition to the spatially and
temporally consistency inference, we found that compos-
ing models from different epochs during a training process
also helps to boost the performance. Denote the output vec-
tor under a specific test setting as a; ; for TPN or b; ; for
slowonly network from the j;;, epoch. And the total sam-
pled epoch number is M, and My, the test setting number
is N, and N, respectively, the prediction of our model en-
semble strategy is:

Nq Mg N, M
Zi:l Z_j:l s(ai,j) + Zzzbl j:b1 s(bi ;) (1)
M, x N, + My x Ny ’

pred =
where s() denotes the softmax operation.

3. Experiments
3.1. Experimental Settings

Models. We use TPN and slowonly network as the fun-
damental models in our experiments. Noting that larger
backbones perform better under the data-efficient setting,
we exploited to use 3DResNet101, 3DResNetl52, and
3DResNet200 as the backbones of the networks respec-
tively. Therefore, we can denote the models utilized dur-
ing our experiments as TPN101, TPN152, TPN200 and
Slowonly 101, Slowonly152, Slowonly200.

Datasets. The committee of 2" “Visual Inductive Priors
for Data-Efficient Computer Vision” provided the Kinet-
1cs400ViPriors, a modification of the official Kinetics400
dataset. The Kinetics400ViPriors contains 400 types of ac-
tions, which is split to 40k, 10k and 20k for training, vali-
dation and testing respectively.

Implementation datails. We conduct all of the experi-
ments on Kinetics400ViPriors, in detail, we train our model
on a mixture of training and validation set without any ex-
tra datasets or pre-trained models. And data augmentation
operations include random crop, horizontal flip, cutmix and
mixup are employed during our training process.

3.2. Experimental Results
3.2.1 Comparison with different settings

In this section, we investigate the model performance under
different settings, include cutmix/mixup during the training
process, diverse spatio-temporal inference during the test-
ing process, and the depths of backbones in the networks.
Training setting. We applied cutmix and mixup on
the basis of the original data augmentations in the train-
ing procedure of both TPN and slowonly networks. As is

Table 1: Results of different train augmentations.

Network Train augmentation Acc(%)
Horizontal Flip 59.0
TPN101 Horizontal Flip+Cutmix 59.4
Horizontal Flip+Mixup 59.7
Horizontal Flip 59.9
Slowonly101 Horizontal Flip+Cutmix 60.5
Horizontal Flip+Mixup 60.3

Table 2: Results of different test augmentations.

Network Test . Clips | Acc(%)
augmentation
Center Crop 10 58.6
Random Crop 10 58.4
Horizontal Flip 10 57.7
Slowonly101 Three Crop 10 59.9
Three Crop 24 59.2
Ten Crop 10 60.3
Ten Crop 24 59.5
Table 3: Results of different backbones.
Network Backbone Acc(%)
3DResNet 50 53.1
TPN 3DResNet 101 59.0
3DResNet 152 60.3
3DResNet 200 63.1
3DResNet 50 52.5
Slowonly 3DResNet 101 59.9
3DResNet 152 61.0
3DResNet 200 63.8

shown in Table |1} the modification on train augmentation
achieved 0.7% and 0.6% accuracy improvement on TPN101
and Slowonly101 respectively, which demonstrates the pos-
itive effects of cutmix/mixup in action recognition.

Testing setting. According to the spatio-temporal in-
ference analysis in section [2.3] the prediction consistency
on multiple dimensions can boost the model performance.
Practically, a sophisticated crop scheme upon the original
input frames will bring a spatial difference and flexible
video splits can maintain a temporal variation. As summa-
rized in Table 2] compared to the simple data augmentation
(center crop, random crop or horizontal flip), “three crop”
increases the performance from 57.7% to 59.9%, and “ten
crop” can further bring 0.4% improvement. For the modifi-
cation in clips number, the 24 clips augmentation shows no
noticeable advancement, however, a combination of differ-
ent video segment strategies can achieve better accuracy in
section[3.2.21

Multiple scale backbones. In the data-efficient setting
of action recognition, a larger backbone can enhance the
generalization ability of the network. As is shown in Table
[3] we tried a bunch of backbones of different depth for both



Table 4: Results on CodaLab Platform.

Method Backbones Acc(%)
(Slowonly)Multi-epochs+Three Crop 3DResNet 50 54.2
(TPN+Slowonly)Multi-epochs+Three Crop 3DResNet 50 56.4
(TPN+Slowonly)Multi-epochs+Three Crop 3DResNet 50, 3DResNet 101 60.5
(TPN+Slowonly)Multi-epochs+Three 3DResNet 50, 3DResNet 101 60.9
Crop+Mixup/Cutmix
(TPN+Slowonly)Multi-epochs+Three 3DResNet 101, 3DResNet 152 62.6
Crop+Mixup/Cutmix
(TPN+Slowonly)Multi-epochs+Ten 3DResNet 101, 3DResNet 152 62.9
Crop+Mixup/Cutmix
(TPN+Slowonly)Multi-epochs+Ten 3DResNet 101, 3DResNet 152, 66.0
Crop+Mixup/Cutmix+10/24 Clips 3DResNet 200 '

TPN and Slowonly network, and the deeper model achieves
higher accuracy. For example, slowonly model constructed
by 3DResNet 152 improves the performance by 8.5% com-
pared to 3DResNet 50.

3.2.2 Results on CodaLab Platform

For the final prediction, we incorporate the above-
mentioned multi-granularity temporal and spatial consis-
tency, complementary network structures and multi-epochs
models by the softmax-based ensemble strategy. Table [
expatiates 7 different settings we have submitted to the Co-
daLab Platform and our optimal result is 66.0% on the test-
ing set of Kinetics400ViPriors.

4. Conclusion

In our work, we focus on this data-efficient action recog-
nition paradigm in this paper. We employ the Slowonly net-
work to capture both fast-tempo and slow-tempo via encod-
ing the features at different depths. Then we build a tempo-
ral pyramid network (TPN) to aggregates the information of
various visual tempos at the feature level. The spatial and
temporal predictions are combined to make the final consis-
tency prediction. Experimental results on 2nd “Visual In-
ductive Priors for Data-Efficient Computer Vision” demon-
strate that our method can achieve competitive results.
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