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Abstract—In order to solve the training problem of the 

VIPriors Action Recognition Challenge with small sample 

datasets. In this paper, we propose a multi-network dynamic 

fusion model which combines self-attention mechanism with 

local perception. We acquire the predicted log likelihood by 

sending the prediction of each model through a softmax layer 

and weight their predictions by the score they achieve.This 

method achieved accuracy of 0.73 in this challenge. On large-

scale datasets, our method achieves satisfying results without 

pre-trained model. The code will be released soon.  

Keywords—self-attention, multi-network, action recognition, 

no pre-trained 

I. INTRODUCTION  

The vision community is witnessing a modeling shift from 

CNNs to Transformers, where pure Transformer architecture- 

s have attained top accuracy on the major video recognition 

benchmarks [1]. Convolution-based backbone architectures 

have long dominated visual modeling in computer vision 

[2,3,4,5,6,7]. However, a modeling shift is currently 

underway on backbone architectures for video recognition, 

from Convolutional Neural Networks (CNNs) [18] to 

Transformers. The trend began with the introduction of 

Vision Transformer (ViT) [8], which globally models spatial 

relationships on non-overlapping image patches with the 

standard Transformer encoder. The great success of ViT on 

images has led to investigation of Transformer-based 

architectures for video-based recognition tasks. However, 

because of transformers’ lacking inductive deviations of 

convolution (such as translation equivalence), it seems larger 

datasets and better regularization method is reqired to achieve 

state of art results. 

Our approach is a multi-network dynamic fusion model 

which combines self-attention mechanism with local 

perception. While training, we enhance the data of the same 

target and send it to multiple robust networks to obtain 

different output feature maps, which is dynamically fused 

after each stage is finished. While testing a single video, We 

make predictions after multiple data augmentations for the 

same test object, and vote on the predicted results to select 

the most labeled result for better generalization. 

II. PROPOSED METHOD 

The schematic diagram of the proposed method is depicted 
in Fig 1.  We adopt a multi-network structure, which 
dynamically integrates VIT and 3Dconvnets [9]. This 

architecture further consists of an ensemble of either different 
backbone architectures, which can combine self attention 
mechanism with local perception to obtain better performance. 

 

 

Fig. 1. Schematic Diagram of the proposed method (inference mode) 

The Video Swin Transformer is majorly composed of the 

Video Swin Transformer block, which is built by replacing 

the multihead self-attention (MSA) [19] module in the 

standard Transformer layer with the 3D shifted window based 

multi-head self-attention module and keeping the other 

components unchanged. Specifically, a video transformer 

block consists of a 3D shifted window based MSA module 

followed by a feed-forward network, specifically a 2-layer 

MLP, with GELU[20] non-linearity in between. Layer 

Normalization (LN) [21] is applied before each MSA module 

and FFN, and a residual connection is also applied. In doing 

so, Video Swin Transformer is able to capture long range 

memory and thus achieves SOTA in many action recoginition 

benchmarks. 

In order to integrate temporal information at different 

times, TIN provides different frames with a unique 

interlacing offset. Instead of habitually assigning each 

channel with a separately learnable offset, TIN adopt 

distinctive offsets for different channel groups. As observed 

in previous experiment, human perception on object motion 

focuses on different temporal resolutions. To maintain 

temporal fidelity and recognizes patial semantics 

jointly,different groups of temporal receptive fields pursuit a 

thorough separation of expertise convolution. Besides, 

groups of offsets also reduce the model complexity as well as 

stabilize the training procedure across heavy backbone 

architectures. 



 Inspired by the observation that features at multiple depths 

in a single network already cover various visual tempos, we 

propose a feature-level temporal pyramid network (TPN) for 

modeling the visual tempo. TPN could operate on only a 

single network no matter how many levels are included in it. 

Moreover, TPN could be applied to different architectures in 

a plug-and-play manner.  

SlowFast present a two-pathway SlowFast model for video 

recognition. One pathway is designed to capture semantic 

information that can be given by images or a few sparse 

frames, and it operates at low frame rates and slow refreshing 

speed. In contrast, the other pathway is responsible for 

capturing rapidly changing motion, by operating at fast 

refreshing speed and high temporal resolution. Despite its 

high temporal rate, this pathway is made very lightweight, 

e.g., ∼20% of total computation. This is because this pathway 

is designed to have fewer channels and weaker ability to 

process spatial information, while such information can be 

provided by the first pathway in a less redundant manner. We 

call the first a Slow pathway and the second a Fast pathway, 

driven by their different temporal speeds. The two pathways 

are fused by lateral connections. 

TimesFormer propose a more efficient architecture for 

spatiotemporal attention, named “Divided Space-Time 

Attention” (denoted with T+S), where temporal attention and 

spatial attention are separately applied one after the other. For 

Divided Attention, within each block, TimesFormer compute 

temporal attention by comparing each patch (p, t) with all the 

patches at the same spatial location in the other frames. 

Our intuition is to take advantage of each network to 

achieve more generalization. For each subnetworks, there 

will be randomly enhanced input with the same datafor 

training, such as Slowfast[10], Timesformer[11], TIN[12], 

TPN[13], Video Swin Transformers, R2plus1d[14], X3D[15], 

etc. There are three main ways of data augmentations: (1) 

spatial augmentations: horizontal flip (2) appearance 

transformation: random gray and color jitter (3) time 

augmentations: a uniform interval, random number of jump 

frames and random start frames. While testing a single video, 

We make predictions after multiple data augmentations for 

the same test object, and vote on the predicted results of 

different augmentations for the same object to select the most 

labeled result,which helps in mitigating common 

generalization, errors as well as decreasing the variance in 

neural network predictions. 

III. EXPERIMENTS 

This section covers the dataset, results, and. 

A.  Dataset 

In this particular challenge, the task is Action Recognition 

and the dataset is Kinetics400ViPriors, a modification of the 

official Kinetics400[16] dataset. The Kinetics400ViPriors 

dataset is a high-quality dataset for human action recognition 

in videos. The dataset consists of around 70000 video clips 

covering 400 human action classes with at least 400 video 

clips for each action class. Each video clip lasts around 10 

seconds and is labeled with a single action class. The videos 

are collected from YouTube. 

B. Implantation details 

For all networks except TimesFormer, we clip each vedio 

into 32 frames with 2 frame interval, then resize frames to 

(224, 224) . Also, data augmentations such as random flip and 

random colorjitter is adopted. 
For testing, TTA(Test Time augmentation) [22] is adopted 

and we use the same clip length of each vedio, only randomly 
clip 10 times and ensemble these ten predictions to acquire 
final results, which we believe would help in achieving better 
generalization, as well as decreasing the variance caused by 
random vedio clipping. More details on the training methods 
for each model are provided in Table1. 

C. Results 

We make predictions after multiple data augmentations for 
the same test object, and vote on the predicted results of 
different augmentations for the same object to select the most 
labeled result,which helps in mitigating common 
generalization, errors as well as decreasing the variance in 
neural network predictions[17]. More details on the training 
and testing methods for each model are provided in Table1. 

We performed our initial experiments on Kinetics400 to 
observe the performance of our ensemble and model selection 
purposes. The proposed method achieves a Top-1 accuracy of 
84.5% on Kinetics400 (split 1) test set without using any pre-
trained weights in our training. We performed our training and

TABLE I.  TRAINING CONFIG 

models 

config 

backbone lr epochs lr schedule 
warm 

up 

slowfast 3DResnet152 0.1 256 Cosine decay 
34 

epoch 

TIN Resnet50 0.05 200 Cosine decay 
20 

epoch 

TPN Resnet50 0.1 150 Cosine decay 
10 

epoch 

VideoSwin Transformer Swin-B 3D 0.001 300 Cosine decay 
20 

epoch 

r2plus1d Resnet34 2 plus 1d 0.1 180 Cosine decay None 

TimesFormer ViT 0.05 300 Cosine decay 
20 

epoch 

X3D-M X3D-M 0.05 180 Cosine decay 
10 

epoch 



 

Fig. 2. Results of differbet ensemble metho

model selection on the VIPriors Action Recognition dataset in 
the same manner. The final fused model (row-9) of Table-1 is 
used to predict the output of the competition test set and 
achieves a Top-1 accuracy of 73%. 

TABLE II.  THE RESULTS OF DIFFERENT ENSEMBLE METHOD 

Ensemble mathod Acc（Top 1） 

Vedio Swin-B 64 

TIN 59 

TPN 53 

X3D-M 62 

R2+1D 59 

SlowFast 63 

TimesFormer 63 

SlowFast+Vedio Swin-B 71 

SlowFast+Vedio Swin-B+TIN 71 

SlowFast+Vedio Swin-B+TIN+ 

TPN 
71 

SlowFast+Vedio Swin-B+TIN+ 

TPN+X3D-M+ TimesFormer 
72 

ALL 73 

CONCLUSION 

    In this paper, we mainly focused on obtaining reliable 

predictions on small sampled datasets. We adopt several 

models to take advantage of each and vote on which, we 

acquire our final result. 
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