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Abstract

Data-efficient image classification means model learn-
ing from a few of image samples without any pretrained
models and any additional data. And 2nd VIPrior Image
Classification Challenge has be successfully hosted in the
past few months. In this paper, a method based on Mixture
of Experts(MoE) in our competition solutions will be intro-
duced. Different from ensemble several single models, MoE
is an approach to improving the capacity of networks with-
out making models deeper, which means that several branch
are built as experts in parallel. The depth of each expert dy-
namically changes during training for a better regulariza-
tion. Additionally, a dynamic weight module is proposed for
a better information fusion among several experts. Experi-
mental results shows that our method could improve classi-
fication performance significantly. Finally, we won the Ist
Place in VIPriors image classification competition. In this
paper; classification experiments are based on Pytorch Im-
age Models(timm)[19|] which is easy to reproduce for oth-
ers.

1. Introduction

Convolutional Neural Networks (CNNs) have achieved
state-of-the-art performance in image classification, object
detection, semantic segmentation, etc. From AlexNet[9],
VGG[14], ResNet[S]], EfficientNet[16l [17], RegNet[13],
ResNeSt[23], etc., the classification accuracy on ImageNet
has been increased significantly. Recently, with the help of
large scale dataset pretraining and extra training data, vi-
sion transformer models show impressive performance than
CNNs, such as ViT[21]], BEiT[1],Swin Transformer[11],
etc. But without pretrained model and large scale dataset,
vision transformer is more difficult for training and easily
overfit.

MoE is an effective way to improve the capacity of net-
works. In MoE architecture, each expert learning different
features from input data. In dynamic neural networks, the
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expert in MoE could be executed selectively and the output
results of experts could be fused by data-dependent weight.
In [8, 4], a real-valued weight is used to dynamically weight
the output from different experts. In the whole process, all
experts will be executed. To reduce the computing con-
sumption during test, a router is trained in [18] 18] that dy-
namically assign ambiguous sample to additional experts.
During test time, the logits of assigned experts will be col-
lected for final decision. In HydraNet[12]], convolutional
blocks in the last stage is replaced by multiple branches.

In this paper, a MoE architecture is proposed to improve
the accuracy for data-efficient image classification. Al-
though in VIPrior classification trainset, every class has 50
images. But the classification results show that the accuracy
of different classes are different: some samples are easy for
learning, but some samples with occlusion or ahaotic back-
ground are difficult for learning. Therefore, in this paper, a
MoE architecture is designed to learning different features
from samples of different difficulty. To avoid experts to
learn the same feature from samples, a loss function for cal-
culating the diversity of output features from experts is used
to force experts to learn differently from training samples.
In each expert, a dynamic neural architecture based method
Stochastic depth[[7] is used for regularization. During train-
ing, a teacher model is used for distillation to generate soft
target for label smoothing. After training each expert sep-
arately, a fusion module is designed to fused the feature of
all experts.

2. Proposed Method

To learning from classification dataset more efficiently,
first, a dynamic neural backbone[7] based on ResNest[23]
is designed. For a more knowledgeable label smoothing, a
teacher model is used to generate soft label during training.
Then, a MoE architecture based on backbone is designed
which shares early layers in the backbone. Compared with
mean of logits from experts, a weighted module can fused
the imformation of different experts which can improve the
performance of MoE.
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Figure 1. The proposed MoE architecture in this paper.

2.1. Training Single Expert with Distillation

For each expert in MoE, ResNeSt[23]] is used as a back-
bone M. Compared with ResNet[3]], EfficientNet[16,
and RegNet[13], ResNeSt has the best performance and
faster convergence rate in our experiments.

The spatial resolution operations in backbone, such as
pooling and strided convolution are harmful for shift equiv-
ariance. Therefore, Blur pool[24] is used to improve the
ability of translation invariant. For a better regularization,
stochastic depth[[7] is used in backbone. During training,
blocks in backbone will randomly skipped, the depth of
backbone will dynamically change, which make the learn-
ing more robust. As a regularization method, label smooth
is an efficient method to make the model constrain more
easily. For label /; of class i(i € C'), label smooth can be
represent as:

I = { 1—c¢
s e/C—1
Considering the noise of the label and multi-label in
trainset, a teacher model M pretrained on trainset is used
for generating soft label to direct the student model M
learning. For an image I;,p,, the final label l;.4;y, for train-
ing can be represented as :

ltrain = A% lls + (1 - )‘) * Mt<Ii’ﬂPUt)

ifx =y,
otherwise,

6]

2

For data augmentation during training, cutmix[20] and
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mixup[22] is used, and a soft label cross-entropy loss
Lopi—ck is used which can be presented as :

Lsoft—CE = 7ltrain * log(M(Iinput)) (3)

Additionally, cosine loss [2] is add into loss function:

L= Lsoftch + (1 - COSine(ltrainv M(Iznput))) (4)

2.2. Mixture of Experts

To improve the accuracy of backbone and make maxi-
mum use of the features of training data in a single model, a
MOoE architecture is designed based on backbone in[2.1] For
an expert M, in MoE has same architecture and indepen-
dent parameters. All experts shared the early layers whose
features are basic features. Taking ResNest for example,
during training, a MoE with N experts, the loss function
can be presented as :

N

LMOE = ZL(ltrmﬁnv Mi(Iinput))

=1

®)

Besides, because of same architecture in MoE, although pa-
rameters initialize randomly, experts would learning similar
features and the outputs of experts will be similar which
are little more than traditional model ensemble. To direct
each expert to learn in an interactive way, a loss function
Lgiversity for calculating the diversity of output features

Lc/assiﬁcation



from experts is designed. For the output p; for iy, expert,
the average outputs p of all experts can be represented as:

1
P=7 ;p (6)
Then the diversity loss of MoE is :
N
Ldiversity = - Z KL(pzyp) (7)
i=1
Finally, the training loss function L of MoE is :
L= LM()E‘ + /\Ldiversity (8)

In this paper, A is set to 0.2.

2.3. Fusion of Experts

In [2.2] during training stage, each expert is calculated
classification loss individually and a diversity loss is cal-
culated among all experts. During testing, the final output
is an average result of all output which ignore the relation-
ship of different experts. So a fusion module M ¢ysi0n 1S
designed to concatenate the embeddings F; of each expert
which can be expressed as :
~En),C)

M pusion = Linear(concat(E1, Es, .. )

During fusion module M ,i0p training, all of parameters
in M s, are fixed.

3. Experiments
3.1. Implementation Details

In order to reproduce the experimental results more
easily, an open source image classification framework
timm[19](https://github.com/rwightman/
pytorch-image—-models) is adopted in our compe-
tition scheme which includes newest image classification
models such as CNNs models and vision transformers.
In training stage, 32 GPUs with 12GB memory are used.
To save the usage of GPU memory and speed up training
process, mixed-precision training technology in Pytorch is
used.

Additionally, self-supervised learning is also useful for
data-efficient learning in our experiments. Each model
would be self-supervised pretrained by MOVO-v2[3] on
training data, and then used for parameters initialization in
training.

All of models are training with 360/720 epochs. Learn-
ing rate warms up in the first 25 epochd from 0.0001 to 0.4.
Then cosine scheduler is applied in the rest epochs. Batch-
size on a single GPU is set from 8 to 32 which depends on
GPU memory usage. After 300/640 epochs training, mixup
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and cutmix will be disabled in the last 60/80 epochs for
complete image learning. Original AutoAugment, horizon-
tal flip randomly, erasing randomly with prob 0.2, dropout
with prob 0.2, label smoothing with value 0.1, stochastic
depth with prob 0.2 are used from first to last. And after
360/720 epochs training, there are 10 epochs to cool down
the model with a learning rate of le-5. And weight decay is
set to 0.0001.

During training, the input image size of model is set to
352%352 and would be cropped randomly to 320*320. Dur-
ing test, test time augmentation is applied for a better per-
formance including scale up input size and ten crops.

To get a better ensemble result, multiple series
of networks are trained in our expertiments including
ResNeSt[23], RegNet[13], EfficientNet[16], EfficientNet-
V2[17], SeResNet[6] and SKNet[10]. The best perfor-
mance of single model in our experiments is 74.03% which
is based on ResNeSt series. For resize operation in SENet
and ResNeSt, ‘bilinear’ is appilied, and ‘bicubic’ is used in
SKNet, EfficientNet, EfficientNet-V2 and RegNet.

3.2. Experimental Results

The MOoE architecture in this paper is based on ResNeSt
which is represented as ‘RS’ in [3.2] InRS, N represents the
number of experts in MoE. For distillation in MoE, a teacher
model would be pretrained firstly on training data which
has same architecture with student model. Then the student
would be trained with the direction of teacher model. Fi-

|

Method top-1 acc. (%)
MOoE-RS-50 (N=1) 67.14
MOoE-RS-SD-50 (N=1) 68.66
MOoE-RS-SD-50 (N=1) + Distill 69.54
MOoE-RS-SD-50 (N=1) + Distill + Fusion -
MOoE-RS-SD-50 (N=3) 70.14
MOoE-RS-SD-50 (N=3) + Distill 71.21
MOoE-RS-SD-50 (N=3) + Distill + Fusion 71.46
MOoE-RS-SD-50 (N=5) 70.55

MOoE-RS-SD-50 (N=5) + Distill 71.17/71.67*

MOoE-RS-SD-50 (N=5) + Distill + Fusion

71.50/71.87*/73.11F

MOoE-RS-101 (N=1) 69.47
MOoE-RS-SD-101 (N=1) 70.71
MOoE-RS-SD-101 (N=1) + Distill 71.84/72.737

MOoE-RS-SD-101 (N=1) + Distill + Fusion -

MOoE-RS-SD-101 (N=3) w/o diversity loss 70.88
MOoE-RS-SD-101 (N=3) 71.44
MOoE-RS-SD-101 (N=3) + Distill 72.05/72.52%/73.47%

MOE-RS-SD-101 (N=3) + Distill + Fusion|72.50/72.67*/74.03"

MOoE-RS-SD-200 (N=1)
MoE-RS-SD-200 (N=1) + Distill

71.12
72.02/73.171

Table 1. Results of MoE architecture proposed in this paper.
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Method top-1 acc. (%) |

RegNetY-080 69.51
RegNetY-080 + Distill 70.17
RegNetY-120 69.76
RegNetY-120 + Distill | 70.44/71.92f
RegNetY-160 70.04
RegNetY-160 + Distill | 70.87/72.121
RegNetY-320 70.02
RegNetY-320 + Distill | 70.90/72.217

Table 2. Results of RegNetY.

Method top-1 acc. (%) ‘
EfficientNet-b4 67.27
EfficientNet-b4 + Distill 68.48/69.671
EfficientNet-b5 68.29
EfficientNet-b5 + Distill 69.90/71.00%
EfficientNet-b6 69.01
EfficientNet-b6 + Distill 70.26/71.38"
EfficientNet-V2-s 68.54
EfficientNet-V2-s + Distill | 69.29/70.47"
EfficientNet-V2-m 69.66
EfficientNet-V2-m + Distill | 70.06/71.207

Table 3. Results of EfficientNet and EfficientNet-V2.

nally, a fusion module is trained with fixing all parameters
in MoE-RS-SD. In Tableg2.2] values with * means models
are trained with 720 epochs and T means models are tested
with ten crops and a larger size than training.

Among the models in above tables, a weighted score av-
erage method[15] is used for ensemble in which the weight
of higher performance models is set to 3 and rest is 1. Fi-
nally, the ensemble result got 75.46% top1 accuracy on test-
set.

4. Conclusion

In this paper, we discuss and explore MoE architecture
for data-efficient learning on VIPriors Image Classification
dataset. In each expert in MoE, a dynamic depth method is
used for regularization. To make experts learn differenetly
from each other, a diversity loss function is applied. Addi-
tionally, a fusion module is designed for information fusion
among all experts. In all of our experiments, there are no
weights pretrained on other/testing data or additional data
used. Finally, we won the 1st Place in VIPriors Image Clas-
sification Competition.
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