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Abstract

This paper introduces the solution of CS21, the second-
place team for VIPriors Object Detection Challenge in
2021. In this work, we build our solution on top of Cascade
RCNN (using ResNet50 as the backbone) and with some
strategies, including initializing from the self-supervised
pre-trained model, soft-NMS with category-related thresh-
olds of IOU, boxes ensemble, and so on. The final result
proved the effectiveness of our solution, and the final evalu-
ation score of mAp is 30.3%.

1. Introduction
Deep neural networks have achieved great success in ob-

ject detection [3, 20, 23, 8, 19, 17, 18] since automatically
localizing and detecting an object in images is one of the
most important applications of computer vision. And it
can be used for visual verification because its task is to lo-
cate and identify objects that exist in the image, rather than
missing objects. Therefore, visual verification as an auto-
matic visual inspection method, which is widely used in
industrial environments, such as infrastructure verification
in map-making, missing instrument detection after surgery,
part inspections in machine manufacturing, etc.

There are important differences between visual verifica-
tion and object detection. For object detection, it needs to
detect and locate the object in the picture once, while for vi-
sual verification, it can perform multiple detections and its
focus is whether the object exists.

The VIPriors Object Detection Challenge proposes a
novel, specifically created visual object part verification
dataset: DelftBikes [12]. And it is used for the detection
challenge, whose main objective is to detect bike parts. As
shown in the Figure 1, the red boxes are missing parts, and
the blue boxes are existing parts, only the existing parts
need to be detected. DelftBikes contains 10,000 bike im-

Figure 1. An example image of DelftBikes data set. Bike parts
have four states: absent, intact, damaged, or occluded. The miss-
ing parts are also bounded with bounding boxes, as shown in the
red box. In the testing phase, we only want to detect parts in the
other three states, except the absent part.

ages with 22 densely annotated parts for each bike, dividing
into the train, val, and test sets, with 7000,1000 and 2000
images respectively. Besides, they explicitly annotate all
part locations and part states as missing, intact, damaged,
or occluded. Only the existing parts are evaluated, that is,
the intact, damaged, and occluded parts.

Existing common object detection datasets such as PAS-
CAL VOC [9], MS-COCO [16], Open Image [13] and
Imagenet-det [21] have only the annotation of the whole
object, without the annotation of the parts. Pascal-parts [6]
and GoCaRD [22] contain part labels, but lack specific lo-
cation information for the missing object, as is required to
evaluate visual verification.

The training set of DelftBike contains 123576 instances,
which is relatively small compared with commonly used de-
tection data sets such as MS COCO. In addition, the data
set contains a large number of noisy labels, which is mainly
due to the inaccurate position of the ground-truth bounding
box. As shown in Figure 2, the first line are some example



Figure 2. Example images of DelftBikes visual verification dataset with 22 bounding box annotated parts. A similar posture, orientation,
and position can mislead a context-sensitive detector, leading to false detection(the saddle in (b), the wheels in (c,d), etc.). At the same
time, there are many wrong bounding box labels, which will also have a larger impact on the convergence of the model(the front mudguard
in (e), the steer in (f), etc.).

images of DelftBikes datasets. The second line are some
examples of images with noisy bounding boxes, some of
which are in the wrong position, and some bounding boxes
contain a lot of background or are just parts of the object.

2. RELATED WORK

Object Detection. There are two main categories of ob-
ject detection methods: one-stage methods, e.g., [19, 17, 1,
15], and multi-stage methods, e.g., [8, 20, 3]. Multi-stage
detectors are usually more flexible and accurate but more
complex than one-stage detectors. The output of one-stage
object detector can be obtained after only one CNN oper-
ation. As for twostage object detector, it usually feeds the
high score region proposals obtained from the RPN(region
proposals networks) to the secondstage CNN for label pre-
diction and regression.

Self-supervised Learning. The core idea of self-
supervised learning is to create free supervisory labels from
data, and use the free supervision to obtain generalizable
and transferrable representations. Contrastive learning is
popular pretext task for self-supervised learning, and recent
methods regard it as a dictionary lookup task for training an
encoder.

3. METHODS

In this section, we introduce the solution in detail in this
competition. It is forbidden to use additional data in this
competition, including pre-trained and transformed mod-
els. Therefore, we use the data provided by the competi-
tion to train a pre-trained model through the self-supervised
method. We also applied a series of data augmentation

methods to alleviate the problem of insufficient data. In the
training stage, we attach DCN [7] module and the Group
normalization module [24] to the network model. In the
testing phase, soft-NMS is employed instead of original
NMS, and different thresholds are set for each category to
improve recall rate. Finally, ensemble methods and some
effective strategies are applied to bike parts detection.

3.1. Base Detector

The model architecture is base on Cascade RCNN [3]
implemented by mmdetection [4]. We use ResNet50 [11]
with DCN [7] as our backbone, and used FPN [14] to deal
with small instances detection. We use the ResNet50 model
instead of a deeper or more complex model because our ex-
periments prove that deeper or more complex networks do
not bring gains for object detection. At the same time, we
also experimented with other better detection models, such
as DetectoRS [18], which worked not well on this data set.

3.2. Self-supervised Pre-training Model

As we all know, it is difficult to converge model training
from scratch in the object detection task, especially with in-
sufficient data. The competition prohibits the use of other
data than the provided training data, i.e., no pre-training, no
transfer learning. However, we can use the data provided
by the competition to train a pre-trained model through
self-supervised or unsupervised methods, thus making the
model converge faster and better. According to the bound-
ing box label information of the trainval set, we cropped and
generated 133,245 bike part images for pre-trained model
training.

Momentum Contrast(MoCo) [5] is presented for unsu-



Figure 3. Momentum contrast (MoCo) trains the visual represen-
tation encoder by using contrast loss to match the encoded query
q with the encoded key dictionary, whose model parameters will
be used for initialization of the backbone network of the detection
model.

pervised visual representation learning with a contrastive
loss [10], which can drive a variety of pretext tasks. MoCo
is a mechanism for building dynamic dictionaries for con-
trastive learning [10], which can be thought of as training
an encoder for a dictionary lookup task, as described next.
Consider an encoded query q and a set of encoded samples
k0, k1, k2, ..., positive encoded sample that are similar to q
is defined as k+. As shown in Figure3, contrast learning
is to learn an encoder F , which can shorten the distance
between q and its positive samplek+, meanwhile, push the
distance between q and its negative samplesk−. The con-
trastive loss function is defined as follows:

Lq = −log exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

(1)

where τ is a temperature hyper-parameter per [25].
Backpropagation can pass back gradients for all samples
by using queues, but the dictionary gets bigger, making up-
dating the encoder tricky. Hence, MoCo proposes a mo-
mentum update to address this problem, the parameter up-
date formula is showed in equation 2, query and dictionary
encoders are represented as fq and fk, respectively. En-
coders can be arbitrary convolutional neural networks, such
as Resnet and Res2Net.

θk = mθk + (1−m)θq (2)

where m ∈ [0, 1) is a momentum coefficient.
MoCo considers a query and a key to be positive if they

originate from the same image, or negative sample pairs
otherwise. In the experiment, in order to enhance the ro-
bustness of the model, different image enhancement meth-
ods are randomly selected for the same image to generate
positive sample pairs. More importantly, the representations

Algorithm 1 Soft-NMS with Category-related Thresholds
Input: B = {b1, ..., bN}, S = {s1, ..., sN},

Nt = {nt1, ...ntc}, L = {l1, l2, ..., lN}
B is the list of initial detection boxes
S contains corresponding detection scores
Nt is the NMS iou threshold
L contains corresponding detection labels

Output: bounding boxes D and sores S.
1: begin
2: D ← {}
3: for c in classes do
4: BC = B[L = c], SC = S[L = c]
5: Nc = Nt[c]
6: while BC 6= empty do
7: m← argmax SC

8: M ← bm
9: D ← D ∪M

10: for bi in BC do
11: if iou(M, bi) > Nc

12: si ← sif(iou(M, bi));
13: end
14: return D,S
15: end

learned by MoCo are well transferable to downstream tasks,
as demonstrated in our experiments.

3.3. Soft-NMS with Category-related Thresholds

Non-maximum suppression is an integral part of the
anchor-based object detection pipeline. The NMS sorts by
score and boxes with high scores suppress boxes with low
scores and overlap greater than the threshold. NMS directly
deletes the boxes with lower scores, thereby reducing the
recall rate of the object detection. There are a lot of ground-
truth bounding boxes with noise, so boxes with high scores
tend not to fit the target object best. According to the design
of the NMS algorithm, if an object is within the predefined
overlap threshold, although it is closer to the GT, it will not
be recalled.

To this end, we use soft-NMS instead of NMS. More-
over, we found that the coordinate deviations of bounding
boxes of each category were different, resulting in that each
category was sensitive to the threshold value of IOU. There-
fore, we set different IOU thresholds for each category to
better improve the recall rate of object detection, as shown
in algorithm 1.

3.4. Ensemble Boxes

Ensemble boxes from different object detection models
can bring greater performance gains. We trained different
neural networks, Double-head Faster-RCNN and Cascade-
RCNN, both using resnet50 as the backbone. The exper-



imental results show that the models with different struc-
tures have different advantages in detecting different types
of objects. As shown in Tabel 1 Double-head Faster-RCNN
performs better than Cascade-RCNN for large objects (ob-
jects larger than 96 *96), while Cascade-RCNN performs
better for small objects (objects smaller than 32 *32) and
medium objects. Thus, we fuse the prediction results of dif-
ferent models on the test set to improve performance.

Table 1. Results of different architecture models
method AP(small) AP(medium) AP(large)

DH-Faster 13.81 29.09 25.01
Cascade 14.05 29.59 24.23

4. EXPERIMENTS

4.1. Dataset

The DelftBikes [12] dataset contains 22 densely anno-
tated parts, where each part is in one of four possible states:
intact, damaged, absent and occluded. All states except ab-
sent were used for training and testing. The training set con-
tains 7000 images and 123,576 annotations, the val set con-
tains 1000 images and 17,667 annotations, and the testing
set contains 2000 images. In our experiments, only training
data were used for model training. The evaluation function
was calculated according to mAP(IoU=.50:.05:.95).

4.2. Experiments Setting

We implement our method using mmdetection [4], which
is an open-source object detection toolbox. Models are
trained using SGD with a momentum of 0.9 and a weight
decay of 0.0001. We trained the model for 24 epochs, the
learning rate is initialized to 0.08 and decays at a decay rate
of 0.1 at 16 epochs and 22 epochs. The ResNet50 backbone
is initialized by our self-supervised pretrained model using
Momentum Contrast (MoCo) v2 [5].

We adopt a multi-scale augmentation during the training
phase. It is emphasized that large-scale training images are
very effective for small object detection. Specifically, with-
out changing the aspect ratio, we randomly adjust the short
side of the image to 800 1600 pixels, and keep the long side
of the image at 2666 pixels. In inference, we adopt multi-
scale testing with image sizes, [(2666, 800), (2666, 900),
(2666, 1000), (2666, 1100),(2666, 1200), (2666, 1300),
(2666, 1400),(2666, 1500), (2666, 1600)], and score thresh-
old of Soft NMS [2] is set to 1e-7. The IOU thresholds of
different categories of soft-NMS are individually set.

4.3. Ablation Study

4.3.1 Self-supervised Pre-trained Model

We studied the effect of the self self-supervised pre-trained
model. It is prohibited to use of any pre-trained checkpoint,
including any pre-trained backbone in this competition. To
illustrate the effectiveness of our approach, we compared
the pre-trained model generated by ImageNet with our self-
supervised pre-trained model. It should be pointed out that
the training data of the self-supervised pre-trained model
is provided by the competition, without using any addi-
tional data. The cropped images of the training data will
be used for the training of the self-supervised model. The
experimental results shown in Table 2, the performance of
the detection model initialized by the self-supervised pre-
trained model is 1% higher than that of the unused pre-
trained model and 0.3% higher than the ImageNet pre-
trained model.

Table 2. Effect of self-supervised pre-trained model

method mAP(val)

no-pretrain 29.64
ImageNet-pretrain 30.14

MOCO v2 30.79

4.3.2 Test Time Augmentation

Table 3 shows the impact of the multi-scale(ie. short of the
image) in the testing phase. We set the width to 2666 pixels
and the height to multiple scales while keeping the aspect
ratio of the image unchanged. At the same time, during the
test phase, we do not perform any image enhancement, in-
cluding horizontal and vertical flip. It can be seen from the
table that multi-scale testing has a significant improvement
in mAP, which increases 0.76 to 30.79 from 30.03. There-
fore, our final model used a configuration of 9 scales.

Table 3. Effect of multi-scale test
scales mAP(val)

12k 30.03
11k, 12k, 13k 30.11

10k, 11k, 12k, 13k, 14k 30.72
9k, 10k, 11k, 12k, 13k, 14k, 15k 30.71

8k, 9k, 10k, 11k, 12k, 13k, 14k, 15k, 16k 30.79

4.3.3 NMS Methods

We studied the effect of different types of NMS methods.
We noticed that mAP improved by 1.0% after using soft-
NMS[2]. Since the training data and the test data have noise
labels, the ground true bounding box may not fit the target



Table 4. Results of all useful experiments in val set.

Method pre-train DCN GN/syncBN TTA soft-nms emsemble tricks mAP(val)

Cascade R-50 None X GN 28.40
Cascade R-50 moco v2 X GN 29.14
Cascade R-50 moco v2 X GN X 30.03

Double-head R-50 moco v2 X GN X X 30.41
Cascade R-50 moco v2 X GN X X 30.79
Cascade R-50 moco v2 X GN X X X 30.91
Cascade R-50 moco v2 X GN X X X X 30.92

object well, so the soft-NMS can retain the boxes, which
have larger iou with GTs. In addition, we found in our ex-
periment that different categories of GT boxes had differ-
ent deviations from the actual bounding boxes due to the
presence of noise labels. Different categories of bound-
ing boxes have different deviations, which are related to
the average size of the object. Therefore, we set different
IOU thresholds for different categories. What’s more, we
experimented with different NMS approaches, the results
were shown in Table 5. Linear soft-NMS improves by 1%
compared to NMS, and our method is further improved by
0.08%.

Table 5. Effect of different NMS methods
method mAP(val)

nms 29.14
soft-nms(gaussian) 30.14

soft-nms(linear) 30.71
soft-nms(Class-related thresholds) 30.79

4.3.4 Other Tricks

We ensemble predictions from different models, double-
head faster rcnn and cascade rcnn. As shown in Tabel 6, en-
semble boxes bring a gain of 0.12%, increasing mAp from
30.79% to 30.91%. After that, we eliminated the overlap-
ping boxes through the spatial position relationship between
different categories, which also brought 0.04% improve-
ment.

Table 6. Effect of other tricks
boxes emsemble elimination boxes mAP(val)

30.79
X 30.83

X 30.91
X X 30.92

Figure 4. Model performance on the testing set. The +self-
supervised pre-train model represents initialize the model from a
self-supervised pre-train model. +soft-NMS uses soft-NMS with
category-related IOU threshold. +TTA indicates using Test Time
Augmentation include multi-scale tests. +ensemble boxes indi-
cates ensembling boxes from various predictions from different
models. +All indicates using all the methods and tricks.

4.3.5 Final Results

The final experimental results in val set and test set are
shown in Table 4 and Figure 4 respectively. On the ba-
sis detector, we added self-supervised pretrain model, GN,
soft-NMS, TTA and Emsemble, and finally got 30.92 mAP
in Val set and 30.3 mAP in test set.

5. CONCLUSION

In this report, we describe our solution, which was
ranked second on Leaderboard on September 24, the normal
deadline for the VIPriors object detection challenge. We
build our method based on Cascade RCNN, using ResNet50
with DCN as a strong backbone and FPN to cope with small
instances. We achieved mAP of 30.3% on the test set, and
demonstrated the effectiveness of our approach. Finally, we
believe that the organizers will have a fair solution to deal
with some unfairness in the competition.
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