Semi-supervised Transformer with FPN for Bikes parts detection
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Abstract

The purpose of traditional object detection tasks is to
detect the position of the target in the picture. But in Delft-
Bikes dataset, which has 10,000 bike photographs in real-
world, with 22 densely annotated parts per image, where
some parts may be missing, we can also detect the loca-
tion of missing parts on the bike. This is a very challenging
task, because of dense annotations on images and overlap-
ping parts on bikes. For our many experimental results,
it shows that object detectors can hallucinate and detect
part of missing objects and locate their expected position.
We combine Swin Transformer and FPN to construct a ob-
ject detector, and such detector achieves good results on
DelftBikes dataset. Further more, we apply some tricks and
pseudo labels obtained from different models to train our
detector, and get the best mAP 0.304.

1. Introduction

Deep learning has been widely used in computer vision,
and automatically positioning and detecting objects in im-
ages is also one of the most important applications of com-
puter vision. However, deep learning object detectors can
produce illusions and detect missing objects, and may even
accurately locate expected but non-existent locations. This
is particularly problematic for applications that rely on vi-
sual component verification. Detecting non-existent objects
is particularly unfavorable for automatic visual component
verification or visual verification applications. The erro-
neous detection of objects produced by the depth detector
may be due to the sensitivity to the absolute position in the
image and also affected by the context of the scene.

The data set for this competition is DelftBikes[4], which
is a novel and specially created visual object part of the case
study to generate illusion verification data set. The data set
has a total of 10,000 bicycle images, including 8,000 in the
training set and 2,000 in the test set. Each image in the
training set is labeled with the bounding box positions of 22
different components.

In response to the above problems, we try a variety of
basic target detection models, and typical models will be

introduced in recent work. In addition to experimental se-
lection of models, visual observations of training set labels
are also performed. Due to the large size difference of 22
types of parts and the large overlap probability, we divided
the 22 types of parts into 2 parts for training according to
the standard of small size difference and low overlap rate,
and added pseudo-labels for iterative training, and finally
got the best The results.

2. Related Work

We will introduce some classic models in the field of
target detection in this section.

Faster R-CNNJ[10] improves the region-based CNN
baseline. It uses a new RPN[13] (Regional Proposal Net-
work), which is a fully convolutional network that can ef-
fectively predict regional proposals with a wide range of
scales and aspect ratios. RPN shares full image convolu-
tion features and a set of common convolution layers with
the detection network, thereby speeding up the generation
of regional recommendations. In addition, a new method
for targets of different sizes is to use multi-scale anchor
points as a reference. This anchor point can greatly simplify
the process of generating suggestions for areas of various
sizes. The area recommendations are parameterized rela-
tive to the reference anchor box. Then measure the distance
between the predicted frame and its corresponding ground
truth frame to optimize the position of the predicted frame.

RetinaNet[14] is a unified network structure composed
of a main network and two sub-networks with designated
tasks. The main network is responsible for calculating the
convolutional features of the entire input image. The first
sub-network further calculates the output of the main net-
work to complete the target classification; the second sub-
network is responsible for the bounding box regression.
Its main contribution is to propose a loss function: Focal
loss[l6]]. The main purpose is to solve the problem of equi-
librium between easy-to-classify samples and difficult-to-
classify samples, not just to solve the problem of sample
imbalance (in terms of quantity). That is to say, the con-
tribution of easy-to-classify samples to loss is reduced, and
the contribution of difficult-to-classify samples to loss is in-
creased.
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Figure 1. An illustration of the shifted window approach for computing self-attention in the proposed Swin Transformer architecture.

BorderDet[9] is based on the FCOS|12] detection archi-
tecture and is a cascaded prediction detector. It mainly adds
a BAM module to the prediction head of the feature pyra-
mid. First predict the preliminary bbox prediction and pre-
liminary classification prediction, and then input the pre-
liminary bbox prediction into the BAM module to obtain
Border classification prediction and Border bbox predic-
tion. The prediction uses 1x1 convolution as before, and
finally the two results are unified for output.

DEtection TRansformer[15] is divided into four parts,
namely a CNN backbone, Transformer Encoder, Trans-
former Decoder, and the final prediction layer FFN. In
DETR, a series of object query vectors are responsible for
detecting objects at different spatial positions. Each ob-
ject query interacts with the spatial visual features encoded
by the convolutional neural network (CNN), and adaptively
collects information from the spatial position through the
co-attention mechanism, and then estimates the bounding
box position and object category.

The biggest contribution of Swin Transformer[7] is to
propose a backbone that can be widely used in all computer
vision fields, and most of the hyperparameters commonly
found in CNN networks can also be manually adjusted in
Swin Transformer, such as the number of network blocks
that can be adjusted, each The number of layers of a block,
the size of the input image, and so on. The Swin Trans-
former Block is the core of the algorithm. It consists of a
window multi-head self-attention (W-MSA) and a shifted-
window multi-head self-attention (SW-MSA) layer. -MSA)
composition.

3. Method
3.1. The Swin Transformer Architecture

The main method we used in the competition is the Swin
Transformer architecture [7], which has achieved good re-
sults on other object detection datasets. An overview of
the Swin Transformer architecture is presented in Figure 2]
At first, we use a patch splitting module to splits the in-

put RGB image into some small patches, like ViT[2]]. Each
patch is treated as a “token” and its feature is set as a con-
catenation of the raw pixel RGB values. Due to limited
computing resources, we set patch size as 4 x 4 and thus
the feature dimension of each patch is 4 x 4 x 3 =48. A
layer, serve as linear embedding layer, is applied on this
raw-valued feature to project it to an arbitrary dimension
C. Several Transformer blocks with modified self-attention
module called Swin Transformer blocks, are applied on
patch tokens above. As the network gets deeper, the number
of tokens is reduced by patch merging layers to produce
a hierarchical representation. The first patch merging layer
concatenates the features of each group of 2 x 2 neighboring
patches, and applies a linear layer on the 4C-dimensional
concatenated features. This reduces the number of tokens
by a multiple of 2x2 = 4 (2x downsampling of resolution),
and the output dimension is set to 2C.

Swin Transformer blocks are applied afterwards for fea-
ture transformation, with the resolution kept at a fixed value.
The Swin Transformer defined some stages jointly produce
a hierarchical representation, with the same feature map res-
olutions as those of typical convolutional networks, e.g.,
VGG[11] and ResNet[3]. Finally, we combine the Swin
Transformer architecture extracting features and FPN[3]] to
locate bicycle parts in images. As a result, the method we
used can solve the vision task in this competition well.

3.2. Swin Transformer block

To replace the standard multi-head self attention (MSA)
module in a Transformer block, Swin Transformer uses a
module based on shifted windows, with other layers kept the
same. The basic block consists of a shifted window based
MSA module, followed by a 2-layer MLP with GELU non-
linearity in between. A LayerNorm (LN) layer is applied
before each MSA module and each MLP, and a residual
connection is applied after each module.

The Swin Transformer block computes self-attention
within local windows for efficient modeling. The win-
dows are arranged to evenly partition the image in a non-
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Figure 2. The architecture of our object detector with a Swin Transformer (Swin-T) and FPN. Four stages in Swin Transformer are a little
different, but two successive Swin Transformer Blocks are the same in each stage.

overlapping manner. Supposing each window contains
MxM patches, the computational complexity of a global
MSA module and a window based one on an image of hxw
patches are:

D
2

Q(MSA) = 4hwC? + 2(hw)*C,
Q(W-MSA) = 4hwC? + 2M?*hwC,

where the former is quadratic to patch number hw, and the
latter is linear when M is fixed (set to 7 by default). Global
self-attention computation is generally unaffordable for a
large hw, while the window based self-attention is scalable.

The first module in Figure[TJuses a regular window parti-
tioning strategy which starts from the top-left pixel, and the
8 x 8 feature map is evenly partitioned into2 x 2 windows
of size 4 x 4 (M = 4). The second module adopts a window-
ing configuration that is shifted from that of the preceding
layer, by displacing the windows by (M/2, M/2) pixels from
the regularly partitioned windows.

W-MSA and SW-MSA are multi-head self attention
modules with regular and shifted windowing configura-
tions, respectively.

3.3. Architecture Select

The Swin Transformer architecture hyper-parameters of
these model variants are:

* Swin-T: C=96, layer numbers={2,2,6,2}
* Swin-S: C=96, layer numbers={2,2,18,2}
* Swin-B: C=128, layer numbers={2,2,18,2}

* Swin-L: C=192, layer numbers={2,2,18,2}

where C is the channel number of the hidden layers in the
first stage.Swin-T, Swin-S and Swin-L, which are versions
of about 0.25%, 0.5x and 2x the model size and computa-
tional complexity, respectively. We select Swin-T as our
baseline and such method reaches the best result in our ex-
periments by using some appropriate strategies.

3.4. Feature Pyramid Networks

FPN(Feature Pyramid Networks)[5]] is now used as ob-
ject detection head in many methods frequently. As a multi-
scale object detection method, it can be effectively com-
bined with Swin Transformer to achieve better results on
object detection task than other models. Thus, we apply
FPN on Swin Transformer to solve the problems in this
competiton.

4. Experiments

We first used DETR[15] for training, and set batch size
as 16 to train 100 epochs. The training data consists of all
8000 images and their labels given by the official. Later,
we found that the effect of the 50 epochs was better than
that of the 100 epochs. We later tried to use the Swin
Transformer(7] model for training. We choose six different
sizes between (800, 1000) and (480, 600) for multi-scale
training. We set the batch size as 16 and trained 50 epochs.
Its score also exceeds the DETR’s score.

The competition needs to detect as many parts as possi-
ble, but the part bbox coincides with a higher degree. We



Method Single model +Soft-nms Two parts Pseudo label Two parts+Pseudo label
Faster RCNN 0.212 0.232 0.241
RetinaNet 0.231 0.250 0.251
Borderdet 0.249 0.252
DETR 0.252 0.269 0.288 0.292 0.299
Swin Transformer 0.272 0.287 0.293 0.302 0.304

Table 1. Comparison of experimental results on the DelftBikes dataset.

used soft-NMS[ 1] instead of NMS|[8]] for prediction and our
score improved. By visualizing results, we found that the
detection result in some dense areas, such as handlebars and
brakes, is offset. We decided to divide the 22 types of labels
into two parts to train the prediction results separately. We
divide into two parts to make the bboxes of objects with
similar features overlap as little as possible. In order to
avoid the model from confusing two similar objects, we put
objects with similar features but not clustered together in the
same part. After dividing into two parts, we still trained the
DETR model and the Swin Transformer model respectively.
Finally, it was found that the effect of using the two parts to
train and test separately will be better than the original 22
types of training together.

Our experimental results are shown in Table E] , We
found that there were more bboxes predicted by the result of
DETR, and the result of Swin Transformer was lacking but
the accuracy was higher. Then we tried to use the DETR
test results and only extracted bboxes with scores higher
than 0.5 as pseudo-labels to train Swin Transformer. We
found that the Swin Transformer after pseudo-label training
works better.

We tried some other models. First, we used Faster
RCNN’s[10] single model, plus soft-NMS and pseudo-
labeled models for training. Then we also used
RetinaNet’s[14] single model, plus soft-NMS, and the
model after training in two parts for testing. In addition,
we also used Borderdet’s[9] single model and soft-NMS
model for training and testing. Finally, we conclude that
using Swin Transformer to divide into two parts and add
pseudo-labels is the best.

In order to achieve better results, we then used (1)the
Swin Transformer testing results to extract bboxes with
scores higher than 0.5 as s-pseudo-labels, (2)the s-pseudo-
label to train DETR and update the previous pseudo-label,
(3) updated pseudo-label to train the Swin Transformer to
get the new testing result, and update a new round of s-
pseudo-label. Through this continuous repetition, we up-
dated a total of 10 rounds of pseudo-labels and s-pseudo-
labels and finally got the best results. All experimental re-
sults obtained by methods are shown in Table 1.
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