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Abstract

Person re-identification (re-ID) aims to identify the same per-
son of interest across non-overlapping capturing cameras,
which plays an important role in visual surveillance appli-
cations and computer vision research areas. Fitting a robust
appearance-based representation extractor with limited col-
lected training data is crucial for person re-ID due to the
high expanse of annotating the identity of unlabeled data.
In this work, we propose a Stronger Baseline for person re-
ID, an enhancement version of the current prevailing method,
namely, Strong Baseline, with tiny modifications but a faster
convergence rate and higher recognition performance. With
the aid the Stronger Baseline, we obtained the third place
(i.e., 0.94 in mAP) in 2021 VIPriors Re-identification Chal-
lenge without the auxiliary of ImageNet-based pre-train pa-
rameter initialization and any extra supplemental dataset.

Introduction
Person re-identification (re-ID) has become a core, and
widely used technique in visual surveillance applications
and computer vision research areas (Sun et al. 2019; Yan
et al. 2019; Liu et al. 2019). It aims at locating and recog-
nizing a person of interest across multiple non-overlapping
cameras in various spots (Zhang et al. 2019; Subramaniam,
Nambiar, and Mittal 2019; Fu et al. 2019).

The main challenge for the person-reID task is that com-
pared with the conventional benchmark for classification
task (e.g., ImageNet), the size of the available training
dataset can be limited, making the risk of over-fitting in-
crease, hence the deterioration of the final generalization
performance. To alleviate this dilemma, most of the cur-
rent work focus on two main technical routines: 1) Design-
ing customized and lightweight neutral network structure
(e.g., OSNet); 2) Introducing discriminative margin-based
loss function (e.g., Triplet loss) widely used in metric learn-
ing and related research field (e.g., face verification).

In this work, we follow the second technical routine and
propose the Stronger Baseline by modifying the Strong
baseline proposed by (Luo et al. 2019) with tiny overhead
but faster convergence rate and higher recognition perfor-
mance as shown in Fig1. In contrast to the argument claimed
in (Luo et al. 2019), we argue that the BNNeck is not the
critical factor in alleviating the conflict between the triplet

Figure 1: Convergence rate and performance are both
enhanced considerably on Market1501 via the proposed
Stronger Baseline.

loss and cross-entropy loss minimization process. Instead,
we claim the BNNeck is simply a standardization procedure.
When combined with a softmax classifier, whose output fol-
lows the multinomial distribution, one of the exponential
family distribution, the loss landspace can be smoother. The
gradient update direction can be more stable, making the op-
timization algorithm more possible to arrive at the optimal
global solution.

Furthermore, we attribute the occurrence of optimization
conflict between cross-entropy loss and triplet loss to two
main aspects: 1) inconsistency in identifying the hard sam-
plers during the hard mining process and 2) inconsistency
in gradient update direction during the objective minimizing
process in two metric space (i.e., Cosine Metric Space and
Euclidean Metric Space). As illustrated in Fig.2(a), com-
pared to the anchor sample fa, the positive sample fp is easy
in Cosine Metric Space for it lies in the similar radial direc-
tion with anchor sample fa; however, when it comes to the
Euclidean Metric Space, the positive sample fp should role
as a hard sample for its significant Euclidean distance from
anchor sample. The inconsistency in identifying the hard-



ness of the positive sample still holds for the negative sample
(e.g., fn in Fig.2(a)) in a similar principle. To alleviate this
conflict, we use Batch-Normalization (BN) module to stan-
dardize the distribution of the samplers as shown in Fig.2(b)
and make the identification of samples’ hardness consistent
in both Cosine and Euclidean metric space.

As for the second inconsistency in gradient update direc-
tion, the gradient for the positive sample fp in Euclidean
Metric Space is parallel to the link between fa and fp. How-
ever, in Cosine Metric Space, the gradient update direction is
parallel to the tangent direction, confusing the final compre-
hensive update direction and deteriorating the optimization
process. To mitigate this confusion, we use the L2 Normal-
ization operation for the feature before triplet loss estima-
tion, that is to say, triplet loss optimizing the distance in the
same cosine metric space with cross-entropy loss as illus-
trated in Fig.2(c).

Based on the analysis for alleviating the conflict in op-
timizing the cross-entropy loss and triplet loss, we pro-
pose our Stronger Baseline with tiny modification on the
Strong Baseline proposed in (Luo et al. 2019). As illus-
trated in Fig.3(b), the feature ft extracted from the back-
bone network (e.g., ResNet) is processed by subsequent
Batch-Normalization module to generate the feature fi for
cross-entropy loss calculation in the training stage and sim-
ilarity evaluation in inference stage, which is the same as
the pipeline of Strong baseline in Fig.3(a). Different from
Strong Baseline, the Stronger Baseline calculate the triplet
loss on the L2 normalization version of feature fi instead of
feature ft. We discard the center loss for its limited influence
on the final performance(Luo et al. 2019).

In a nutshell, the main contribution of this work can be
summarized in the following folds:

1. We conclude two kinds of inconsistency while simulta-
neously optimizing the Cosine and Euclidean metric space,
inducing the conflict in minimizing the cross-entropy and
triplet loss.

2. We propose the Stronger Baseline based on analysis
of how to alleviate the inconsistency during optimization by
ameliorating the Strong Baseline with limited overhead.

3. We verify the superiority of our proposed method on
the Market1501 and SynergySports benchmark.

Related Works
Person Re-identification
Gheissari et al. (Gheissari, Sebastian, and Hartley 2006)
first defined the person re-ID as a specific computer vision
task. Most of the traditional methods focused on feature ex-
traction via handcraft design before the emergence of deep
learning(Kviatkovsky, Adam, and Rivlin 2012; Farenzena
et al. 2010; Gray and Tao 2008; Matsukawa et al. 2016;
Cheng et al. 2011). With the rise of deep learning in re-
cent years, convolutional neural networks (CNN) based fea-
ture representation methods have become the mainstream
for image-based person re-ID (Li, Zhu, and Gong 2018;
Yan et al. 2019; Sun et al. 2018; Xiao et al. 2016). Accord-
ing to Zheng et al. (Zheng, Yang, and Hauptmann 2016),
most of the pre-existing image-based works concentrated on

discriminative learning and metric learning. Discriminative
learning (Li, Zhu, and Gong 2018; Chang, Hospedales, and
Xiang 2018; Guo and Cheung 2018; Liu et al. 2017) aims
at getting representative features for identity classification.
While metric learning (Sun et al. 2017; Zheng et al. 2017)
learns to project extracted features from different cameras
and views into a common feature representation subspace.

Distance Metric Learning

The goals of the training and testing are slightly different in
person re-ID tasks. The training process mainly focuses on
classification or metric learning, while the testing process is
a retrieval problem. Most existing supervised person re-ID
methods apply identification loss for identity classification
(e.g., cross-entropy loss)(Sun et al. 2017) and verification
loss for metric learning (e.g., triplet loss)(Hermans, Beyer,
and Leibe 2017). Triplet loss (Schroff, Kalenichenko, and
Philbin 2015) is designed initially for face recognition prob-
lem and has been regarded as a commonly used method in
the retrieval related tasks, especially in person re-ID. In the
triplets, an anchor, a positive sample, and a negative sam-
ple are included. Since triplet loss is calculated by two ran-
domly sampled person identification, it is difficult to ensure
that the distance between the anchor and positive samples
are smaller than the distance between the anchor and nega-
tive examples in the whole training dataset(Luo et al. 2019).
Quadruplet loss(Chen et al. 2017) is an improved version of
triplet loss, which contains two different negative samples
to learn a larger inter-class distance and a smaller intra-class
distance compared with the triplet loss(Jiang et al. 2020).

Our Method

Holistic Pipeline

In our experiments, the Stronger Baseline is applied as our
holistic pipeline to realize the representation extracting and
loss objective calculation. We use ResNet50 as a backbone
for controlled experiments and OSNet without ImageNet
pretrain for final result submission. The influence of the
Backbone is empirically limited to the yielded performance,
and the gain of the performance mostly owes to the proposed
Stronger Baseline. Both the BNNeck and FC layers are ini-
tialized through Kaiming initialization proposed in(He et al.
2015). Each image in a training batch is prepossessed and
resized to 256×128 in pixels. In each batch, we sample 8
identities, each with 4 images.

Data Augmentation

We utilize the following data augmentation for enhanc-
ing the generalization performance: Random Horizontal
Flip with probability 0.5, Random Erasing with probability
0.5, Color Jitter with probability 0.5, and AutoAugmenta-
tion(Cubuk et al. 2018). We are inconclusive in which aug-
mentation strategy is beneficial to the final performance at
most. We solely adopted the first two augmentation strate-
gies while conducting the controlled experiment.



Figure 2: Schematic illustration of the optimization conflict in Cosine and Euclidean metric space. (a) The hardness of
samples is identified inconsistently in Cosine and Euclidean metric space. (b) BN module can alleviate the first inconsistency
in identifying the hardness of samples. (c) LN operation can alleviate the second inconsistency in gradient updating direction.
Shape refers to the identity of the samples, and filling color refers to the role in metric pairs (e.g., anchor), Grad., BN, LN, CM,
and EM refer to the Gradient, Batch-Normalization, L2 Normalization, Cosine Metric, and Euclidean Metric, respectively.

Figure 3: The overview of the pipeline of Stronger Baseline. (a) The primary pipeline of Strong Baseline. (b) The enhanced
version of Strong Baseline, namely, Stronger Baseline.

Post-processing
Person re-ID can also be regarded as a retrieval problem.
While presenting our final results, we utilize two com-
mon post-processing strategies, i.e., Query Expansion and
ReRank, whose hyperparameters follow the default setting
in FastReID.

Optimization Strategy
For controlled trials on Market1501, Adam(Kingma and Ba
2014) optimizer is selected with an initial learning rate of
3.5 × 10−4. The commonly adopted warm-up strategy(Fan
et al. 2019) is applied to bootstrap the network for better
performance. In practice, the network is optimized for 120
epochs. We spend 10 epochs linearly increasing the learning
rate from 3.5×10−6 to 3.5×10−4, and it then decays at the

30th and 55th epoch. We discard the warm-up stage for final
submission and use SGD optimizer instead due to the exclu-
sion of pretrain. The network is optimized for 350 epochs,
and the init learning rate of 0.065 decays at the 150th, 225th
and 300th epoch by 0.1.

Experiments
We conduct two main experiments in this work, i.e., Con-
trolled Experiment on the public benchmark (i.e., Mar-
ket1501) and Submitted Experiment on SynergySports. The
former aims to justify the superiority of the proposed
Stronger Baseline, and the latter aims to obtain a better re-
sult with extra tricks (e.g., Complex Data Augmentation and
Post-Processing Strategy).



Datasets and Evaluation Protocol

Market-1501 dataset is featured by 1,501 IDs, 19,732
gallery images and 12,936 training images captured by 6
cameras. Market-1501 are produced by the DPM detector.
The Cumulative Matching Characteristics (CMC) curve is
used for performance evaluation, which encodes the possi-
bility that the query person is found within the top n ranks
in the rank list. We also employ the mean Average Precision
(mAP), which considers the retrieval process’s precision and
recall. The evaluation toolbox provided by the Market-1501
authors is used.

SynergySports generates from short sequences of basket-
ball games, and each sequence is composed of 20 frames.
For the validation and test sets, the query images are per-
sons taken at the first frame, while the gallery images are
identities taken from the 2nd to the last frame. There are 436
IDs, 8569 images in training split, and 50 IDs, 960 images
in validation split.

Empirical Results

As illustrated in Fig1, the Stronger Baseline can enhance the
convergence rate and performance simultaneously. The de-
tailed results are listed in Table1. The mAP of Strong Base-
line is improved by 2.03, which is a considerable enhance-
ment considering the tiny modification and no extra intro-
duced overhead. We further evaluate our method on the val-
idation set of SynergySports; the results are listed in Table2,
the mAP achieves the predictable improvement by 1.89.

As for the Submitted Experiment, we switch to the OS-
Net, a lightweight backone customized for person re-ID,
and introduce the complex data augmentation and post-
processing strategy for better generalization performance.
The results on the validation and test set are listed in Table3.

Protocol Strong Baseline Stronger Baseline

mAP 83.13 85.16 (+2.03)
Rank-1 92.99 93.71 (+0.72)

Table 1: The mAP and rank-1 comparison result of Strong
Baseline and Stronger Baseline on Market1501. We use
ResNet50 as backbone and ignore the complex data aug-
mentation (i.e., Color Jitter and AutoAug) and Post-
Processing here.

Protocol Strong Baseline Stronger Baseline

mAP 92.74 94.63 (+1.89)

Table 2: The mAP comparison result of Strong Baseline
and Stronger Baseline on SynergySports (Validation Set).
We use ResNet50 as backbone and ignore the complex data
augmentation (i.e., Color Jitter and AutoAug) and Post-
Processing here.

Protocol Validation Set Test Set

mAP 95.17 94.19

Table 3: The mAP result on SynergySports. We use
OSNet1x0 as backbone and introduce the complex data
augmentation (i.e., Color Jitter and AutoAug) and Post-
Processing here.

Conclusions
In this paper, we concluded two kinds of inconsistency
while optimizing the Cosine and Euclidean metric space si-
multaneously, i.e., hardness identification inconsistency and
gradient update inconsistency, causing the conflict between
minimizing the cross-entropy loss and triplet loss. To alle-
viate the inconsistency and ameliorate the optimization pro-
cess, we proposed the Stronger Baseline with tiny modifi-
cations on the Strong Baseline but a faster convergence rate
and higher evaluation performance. With the aid of Stronger
Baseline, we obtain a third place in the 2021 VIPriors Re-
identification Challenge without the auxiliary of ImageNet-
based pre-train parameter initialization and any extra sup-
plemental dataset.
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