
A Technical Report for 2021 VIPriors Image
Classification Challenge

Jiahao Wang, Hao Wang, Yifei Chen, Yanbiao Ma, Fang Liu, Licheng Jiao
School of Artificial Intelligence
Xidian University, Xi’an, China
Email: 18391763127@163.com

Abstract—Training a model from scratch in a data-deficient
environment is a challenging task.In this challenge, we use
multiple differentiated backbones and multiple losses for training,
and use a number of tricks to assist in model training, such as
initializing weights, warm up, mixup[1], and cutmix[2]. finally, we
propose a two-stage model fusion and a helpful strategy (result
coverage) to improve our accuracy. Our final accuracy of Top-1
on the test set is 75.178%.

Index Terms—multiple model,model fusion,cutmix

I. INTRODUCTION

The VIPriors Image Classification Challenge is one of
"Visual Inductive Priors for Data-Efficient Computer Vision"
challenges. The main goal of the challenge is to obtain the
highest Top-1 accuracy on a small sample of the classification
dataset.The training data and validation data are two subsets
of the training portion of Imagenet 2012. The test set is taken
from the validation set of the Imagenet 2012 dataset. The
final data obtained consists of 50,000 training sets, 50,000
validation sets and 50,000 test sets with a total of one thousand
categories, each containing 50 images.

In recent years, a lot of work has achieved excellent
results on the Imagenet dataset. The seminal ResNet[3] models
introduced in 2016, revolutionized the world of deep learning.
ResNeXt[4] adopts group convolution in the ResNet bottle-
block, which converts the multi-path structure into a unified
operation. SE-Net[5] introduces a channel-attention mecha-
nism by adaptively recalibrating the channel feature responses.
ResNeSt[6] introduces a Split-Attention block that enables
attention across feature-map groups. TResNet[7] introduces a
series of architecture modifications that aim to boost neural
networks’ accuracy while retaining their GPU training and
inference efficiency. The above work has inspired us a lot in
this Challenge.

Compared to the Imagenet dataset, which has over 14
million images, the number of images in this challenge is
much smaller. In our approach, based on multipe differentiated
backbones network, we use multiple loss functions, data
enhancement strategies and model integration to improve the
classification performance.

II. METHOD

In this section, the method used to find an answer to the
research questions should be presented.

A. Model Architecture

We have selected a few models that we used in this
competition to introduce.

1) ResNest: ResNest[6] demonstrates a simple module:
Split-Attention, a block that enables attention across feature
maps. By stacking these Split-Attention blocks in ResNet
style, a new ResNet variant called ResNest is obtained.
ResNest retains the full ResNet structure and can be used di-
rectly for downstream tasks (e.g., target detection and seman-
tic segmentation) without incurring additional computational
costs.

2) TResNet: TResNet[7] is designed based on the
ResNet50 architecture with special modifications and opti-
mizations, and contains three variants, TResNet-M, TResNet-
L and TResNet-XL. Only the model depth and number of
channels differ between variants.Figure 1. shows TResNet
BasicBlock and Bottleneck design.

Figure 1. TResNet BasicBlock and Bottleneck design.

3) ReXNet: The ReXNet[8] network architecture improves
on the expression bottleneck: expanding the number of input
channels of the convolutional layers; replacing the ReLU6
activation function; and designing more expansion layers, i.e.,
reducing the rank before and after each expansion. The model
gets a significant performance improvement.

4) Inception-ResNet: The Inception-ResNet[9] network is
the residual structure of ResNet introduced in the Inception



module, which has two versions, where Inception-ResNet-
v1 is aligned to Inception-v3, while Inception-ResNet-v2 is
aligned to Inception-v4, both of which have similar computa-
tional complexity respectively.The Inception-ResNet network
structure is shown in Figure 2, and the two figures on the right
are the stem module structures of the Inception-ResNet-v1 and
Inception-ResNet-v2 networks, respectively.

Figure 2. Inception-ResNet network structure and stem module.

5) RegNet: RegNet networks combine the advantages of
manual design networks and neural network search (NAS).
In this network, the concept of constructing network design
space is used. Design Space The design process is to design
a progressively simplified version of the original design space
that is not restricted. The initial design space for RegNet was
AnyNet.

B. Loss functions
1) Label Smoothing: The idea of label smoothing was

first proposed to train Inception-v2.Label smoothing is a
mechanism of regularize the classifier layer by estimating the
marginalized effect of label-dropout during training. It changes
the construction of the true probability to

qi =

{
1− ε if i = y
ε/(K − 1) otherwise (1)

where ε is a small constant. Now the optimal solution
becomes

z∗i =

{
log((K − 1)(1− ε)/ε) + α if i = y
α otherwise (2)

where α can be an arbitrary real number. This encourages a
finite output from the fully-connected layer and can generalize
better.

2) Taylor Cross Entropy Loss: In order to to improve the
robustness of the model to label noise, we use a general robust
learning framework to train deep models in the presence of
label noise. The loss are calculated as follows.

Lt−CE(f(x), y) =

t∑
i=1

(1− fy(x))i

i
(3)

3) Bi-Tempered Logistic Loss : Bi-Tempered Logistic Loss
loss is proposed to reduce the sensitivity of Logistic Loss to
outliers, increase the discrimination and contribution of correct
samples, and mitigate the impact of mislabeling. This loss is
calculated as follows.

logt(x) :=
1

1− t
(
x1−t − 1

)
(4)

expt(x) := [1 + (1− t)x]1/(1−t)+ (5)

C. Data Augmentation

Data augmentation is a commonly used method to improve
model performance in deep learning, mainly used to increase
the training data set and improve the generalization ability
of the model, the data augmentation methods we used is
described as follows.

1) Auto Augmentation: Auto-Augmen[10] is a strategy that
augments the training data with transformed images, where the
transformations are learned adaptively. A search which tries
various candidate augmentation policies returns the best 25
best combinations. One of these 25 policies is then randomly
chosen and applied to each sample image during training.

2) mixup: Here is another augmentation method called
mixup[1]. In mixup, each time we randomly sample two
examples (xi, yi) and (xj, yj). Then we form a new example
by a weighted linear interpolation of these two examples:

x̂ = λxi + (1− λ)xj ŷ = λyi + (1− λ)yj (6)

where α ∈ [0, 1]is a random number. In mixup training, we
only use the new example (x̂, ŷ).

3) cutmix: Cutmix[2] is a data enhancement strategy that
randomly fills a portion of the image with regional pixel
values of other data in the training set, and the results of
the classification are assigned in proportion to the area of
the patch. The original image and the image after Cutmix
processing are shown as Figure 3.

Figure 3. The Original images and the image after cutmix.

D. Proposed method

We propose dynamic semantic scale balance loss (DSB
loss) and have submitted it to AAAI2022.Unlike sample size
imbalance, we focus on semantic scale imbalance between
categories, and define and quantify it, achieving significant
performance gains on datasets such as mini-imagenet, CI-
FAR100, CUB2011, and Cars196.In this paper, we propose
a loss function called DSBFocalloss for training models by
improving Focal Loss[11].



Donatepti = sigmoid(zti) = 1/(1 + exp(−zti)), Focal loss
is defined as:

FL(z, y) = −
C∑
i=1

(1− pti)γ log(pti) (7)

DSBFocalloss is defined as:

DSB Focal loss (Z, yi) = −
1

Si

C∑
i=1

(
1− pti

)γ
log
(
pti
)
. (8)

where Si represents the semantic scale of category i. We define
the feature volume for measuring the semantic scale of each
category, and due to the principle of double-blind review, we
cannot release the specific details and code of g the method
for the time being.

III. EXPERIMENT

A. Data Preprocessing

Data preprocessing can be very effective in reducing the
risk of model overfitting and can help a lot in improving the
robustness of the model. We use the following strategy on
the training set in addition to the previously introduced Data
Augmentation:

1) : Randomly crop a rectangular region whose aspect ratio
is randomly sampled in [3/4,4/3] and area randomly sampled
in [8%,100%], then resize the cropped region into a 224-by-
224 square image.

2) : The training set images are flipped horizontally and
vertically based on a probability of 0.5.

3) : Adjust brightness, contrast, saturation and hue with
parameters [0.5, 1.5], [0.5, 1.5], [0.5, 1.5], [-0.1, 0.1] respec-
tively.

4) : Add Gaussian noise with parameter settings of 0, 1,
20.

5) : The RGB channels are normalized by subtracting the
mean and dividing by the standard deviation.

For the validation and testing phase, we use the TTA
strategy to pre-process the data using four methods respec-
tively,includes random horizontal flipping, color dithering,
adding Gaussian noise and random rotation.

B. Training Details

We trained a total of 22 models to pave the way
for the later model fusion,namely resnest101 wtih ce,
taylor_ce and bi_tempered_logistic loss, TresnetXL with ce,
taylor_ce and bi_tempered_logistic loss, mixnetXXL[12]with
ce, taylor_ce and bi_tempered_logistic loss, resnest200
wtih ce, taylor_ce and bi_tempered_logistic loss,
densenet161[13]with ce, taylor_ce and bi_tempered_logistic
loss, skresnext50_32*4d[14]with ce loss, seresnet152 with
ce loss, seresnet101 with ce loss, seresnext101 with ce
loss, rexnet200 with ce loss, regnetx120 with ce loss and
inceptionresnetV2 with ce loss.

During the experiments, we use Xavier algorithm to initial-
ize the convolution and fully connected layers. The optimizer
we choose to use SGD and set the momentum to 0.9. The

initialization learning rate we set to 0.1 and use warm up to
linearly increase to the preset learning rate in the first 5 epochs
and then decay according to the cos function value and the
weight decay is set to 0.0001. After comparison, we find that
the small batch size To make the training faster, we call the
apex library and use mixed precision for training. For all tasks
we use 4 Nvidia 2080tiGPUs and 4 Nvidia V100GPUs on the
pytorch framework.

C. Single Model Results

We fused the training and validation sets to train a single
model, and at the same time extracted a new validation set
for verification, without using pre-training weights during the
training process. The results of all single models are shown
below:

Table I
RESULTS IN THE CROSS-ENTROPY LOSS SINGLE MODEL.

Method test size Add TTA top1 accuracy
224 0.676

resnest101 320 yes 0.6802
380 0.6697
224 0.66892

TresnetXL 320 yes 0.68356
380 0.66562
224 0.6612

mixnetXXL 320 yes 0.65822
380 0.63734
224 0.6844

resnest200 320 yes 0.6852
380 0.67138
224 0.64218

densenet161 320 yes 0.65146
380 0.64066
224 0.631

skresnext50 320 yes 0.63562
380 0.62774
224 0.66174

seresnet152 320 yes 0.66536
380 0.65788
224 0.65938

seresnet101 320 yes 0.6733
380 0.64066
224 0.66626

seresnext101 320 yes 0.67304
380 0.65112
224 0.65992

rexnet200 320 yes 0.66596
380 0.64692
224 0.66532

regnetx120 320 yes 0.66292
380 0.64044
224 0.6555

inceptionresnetV2 320 yes 0.66664
380 0.63898



Table II
RESULTS IN THE TAYLOR CROSS-ENTROPY LOSS SINGLE MODEL.

Method test size Add TTA top1 accuracy
224 0.6811

resnest101 320 yes 0.6733
380 0.6675
224 0.66968

TresnetXL 320 yes 0.68813
380 0.65561
224 0.6682

mixnetXXL 320 yes 0.6633
380 0.64712
224 0.6861

resnest200 320 yes 0.6903
380 0.6665
224 0.65172

densenet161 320 yes 0.65536
380 0.65017

Table III
RESULTS IN THE BI-TEMPERED LOGISTIC LOSS SINGLE MODEL.

Method test size Add TTA top1 accuracy
224 0.66744

resnest101 320 yes 0.67242
380 0.65664
224 0.65711

TresnetXL 320 yes 0.67826
380 0.65698
224 0.6519

mixnetXXL 320 yes 0.6661
380 0.64925
224 0.6766

resnest200 320 yes 0.6709
380 0.6651
224 0.64891

densenet161 320 yes 0.6555
380 0.64201

During the experiment, we tested and verified on 3 scales,
224, 320 and 380 respectively.We found that the highest
accuracy is usually achieved when the test size is 320. We
also used TTA to further improve the performance of the single
model.

D. Model Fusion

Model fusion has very much improved our results, and we
use a two-stage model fusion strategy.In the first stage we
fuse the results of different models at the same scale with the
same loss using soft voting. It is worth noting that in the fusion
process, we use the scores of each single model as weights, and
then perform softmax calculations on all the weights to obtain
the final weights, and finally weight the model results for
fusion.In the second stage, we use the nine results generated
in the first stage and conduct a second vote, this time using
hard voting, with a final top1 accuracy of 72.4% of the results.

Figure 4. Specific structure diagram of model fusion.

E. Result Coverage

For the above fusion results, we analyzed the accuracy out-
put of all categories and found that there were 136 categories
with accuracy less than 0.5, so we trained separately for these
136 categories. Specifically, we resampled the data of these
136 categories, and each category was resampled to 500 data.
For the other categories, we randomly selected 5 samples for
each category, and then fused all the newly selected samples
to form a new category. We trained these 137 categories using
resent101, rexnet200, inveptionv4, efficientnetb4, resnest200
and resnext101, respectively, and we used the DSBfocalloss
proposed in this paper to participate in the training, and finally
the result labels were transformed and coverage.

We analyzed the results of these targeted trainings and found
that while the accuracy of these 136 classes did improve
significantly, it would have an impact on the other classes,
causing the model to misclassify the other 864 classes as these
136 classes. To address this situation, we covered it by taking
out the labels of the other 864 classes from the previous fusion
results and covering them with the newly trained results. After
validation, we found that the top1 accuracy of the coverage
results on the newly extracted validation set was about 74.5%
at the highest. Finally, we fused the 6 coverage results by hard
voting and achieved 75.178% accuracy.

IV. DISCUSSION

We also tried to train many transformer[15] models and
mlp[16] models, but the amount of data was too small, so it
was very difficult to train from scratch, and the results were
not good. For model fusion we tried to use stacking strategy
for score improvement, but the results were generally good.

V. CONCLUSION

In this paper, we use multiple differentiated trunks and
multiple losses to increase the variability of the results. Various
techniques are used to improve the robustness of the model as



well as the speed of convergence. Finally, our proposed two-
stage model combination strategy and targeted training result
coverage strategy effectively improve our scores on the test
set.

REFERENCES

[1] L. Huang, C. Zhang, and H. Zhang, “Self-adaptive training: beyond
empirical risk minimization,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020,
pp. 19 365–19 376. [Online]. Available: https://proceedings.neurips.cc/
paper/2020/file/e0ab531ec312161511493b002f9be2ee-Paper.pdf

[2] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Reg-
ularization strategy to train strong classifiers with localizable features,”
2019.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[4] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” 2016.

[5] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 42, no. 8, pp. 2011–2023, 2020.

[6] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z.-L. Zhang, H. Lin, Y. Sun, T. He,
J. Mueller, R. Manmatha, M. Li, and A. Smola, “Resnest: Split-attention
networks,” ArXiv, vol. abs/2004.08955, 2020.

[7] T. Ridnik, H. Lawen, A. Noy, and I. Friedman, “Tresnet: High perfor-
mance gpu-dedicated architecture,” 2021 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 1399–1408, 2021.

[8] D. Han, S. Yun, B. Heo, and Y. Yoo, “Rexnet: Diminishing repre-
sentational bottleneck on convolutional neural network,” ArXiv, vol.
abs/2007.00992, 2020.

[9] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
2016.

[10] E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le, “Autoaug-
ment: Learning augmentation strategies from data,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 113–123.

[11] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” 2017.

[12] M. Tan and Q. V. Le, “Mixconv: Mixed depthwise convolutional
kernels,” 2019.

[13] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” 2016.

[14] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,” 2019.
[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.
[16] I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Un-

terthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, M. Lucic, and
A. Dosovitskiy, “Mlp-mixer: An all-mlp architecture for vision,” 2021.

https://proceedings.neurips.cc/paper/2020/file/e0ab531ec312161511493b002f9be2ee-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e0ab531ec312161511493b002f9be2ee-Paper.pdf

	I Introduction
	II Method
	II-A Model Architecture
	II-A1 ResNest
	II-A2 TResNet
	II-A3 ReXNet
	II-A4 Inception-ResNet
	II-A5 RegNet

	II-B Loss functions
	II-B1 Label Smoothing
	II-B2 Taylor Cross Entropy Loss
	II-B3 Bi-Tempered Logistic Loss 

	II-C Data Augmentation
	II-C1 Auto Augmentation
	II-C2 mixup
	II-C3 cutmix

	II-D Proposed method

	III Experiment
	III-A Data Preprocessing
	III-A1 
	III-A2 
	III-A3 
	III-A4 
	III-A5 

	III-B Training Details
	III-C Single Model Results
	III-D Model Fusion
	III-E Result Coverage

	IV Discussion
	V Conclusion
	References

